quantum.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. #include "quantum.h"
  2. #ifndef TAPPING_TERM
  3. #define TAPPING_TERM 200
  4. #endif
  5. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  6. switch (code) {
  7. case QK_MODS ... QK_MODS_MAX:
  8. break;
  9. default:
  10. return;
  11. }
  12. if (code & QK_LCTL)
  13. f(KC_LCTL);
  14. if (code & QK_LSFT)
  15. f(KC_LSFT);
  16. if (code & QK_LALT)
  17. f(KC_LALT);
  18. if (code & QK_LGUI)
  19. f(KC_LGUI);
  20. if (code & QK_RCTL)
  21. f(KC_RCTL);
  22. if (code & QK_RSFT)
  23. f(KC_RSFT);
  24. if (code & QK_RALT)
  25. f(KC_RALT);
  26. if (code & QK_RGUI)
  27. f(KC_RGUI);
  28. }
  29. void register_code16 (uint16_t code) {
  30. do_code16 (code, register_code);
  31. register_code (code);
  32. }
  33. void unregister_code16 (uint16_t code) {
  34. unregister_code (code);
  35. do_code16 (code, unregister_code);
  36. }
  37. __attribute__ ((weak))
  38. bool process_action_kb(keyrecord_t *record) {
  39. return true;
  40. }
  41. __attribute__ ((weak))
  42. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  43. return process_record_user(keycode, record);
  44. }
  45. __attribute__ ((weak))
  46. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  47. return true;
  48. }
  49. void reset_keyboard(void) {
  50. clear_keyboard();
  51. #ifdef AUDIO_ENABLE
  52. stop_all_notes();
  53. shutdown_user();
  54. #endif
  55. wait_ms(250);
  56. #ifdef CATERINA_BOOTLOADER
  57. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  58. #endif
  59. bootloader_jump();
  60. }
  61. // Shift / paren setup
  62. #ifndef LSPO_KEY
  63. #define LSPO_KEY KC_9
  64. #endif
  65. #ifndef RSPC_KEY
  66. #define RSPC_KEY KC_0
  67. #endif
  68. static bool shift_interrupted[2] = {0, 0};
  69. static uint16_t scs_timer = 0;
  70. bool process_record_quantum(keyrecord_t *record) {
  71. /* This gets the keycode from the key pressed */
  72. keypos_t key = record->event.key;
  73. uint16_t keycode;
  74. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  75. /* TODO: Use store_or_get_action() or a similar function. */
  76. if (!disable_action_cache) {
  77. uint8_t layer;
  78. if (record->event.pressed) {
  79. layer = layer_switch_get_layer(key);
  80. update_source_layers_cache(key, layer);
  81. } else {
  82. layer = read_source_layers_cache(key);
  83. }
  84. keycode = keymap_key_to_keycode(layer, key);
  85. } else
  86. #endif
  87. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  88. // This is how you use actions here
  89. // if (keycode == KC_LEAD) {
  90. // action_t action;
  91. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  92. // process_action(record, action);
  93. // return false;
  94. // }
  95. if (!(
  96. process_record_kb(keycode, record) &&
  97. #ifdef COMBO_ENABLE
  98. process_combo(keycode, record) &&
  99. #endif
  100. #ifdef MIDI_ENABLE
  101. process_midi(keycode, record) &&
  102. #endif
  103. #ifdef AUDIO_ENABLE
  104. process_music(keycode, record) &&
  105. #endif
  106. #ifdef TAP_DANCE_ENABLE
  107. process_tap_dance(keycode, record) &&
  108. #endif
  109. #ifndef DISABLE_LEADER
  110. process_leader(keycode, record) &&
  111. #endif
  112. #ifndef DISABLE_CHORDING
  113. process_chording(keycode, record) &&
  114. #endif
  115. #ifdef UNICODE_ENABLE
  116. process_unicode(keycode, record) &&
  117. #endif
  118. #ifdef UCIS_ENABLE
  119. process_ucis(keycode, record) &&
  120. #endif
  121. #ifdef PRINTING_ENABLE
  122. process_printer(keycode, record) &&
  123. #endif
  124. #ifdef UNICODEMAP_ENABLE
  125. process_unicode_map(keycode, record) &&
  126. #endif
  127. true)) {
  128. return false;
  129. }
  130. // Shift / paren setup
  131. switch(keycode) {
  132. case RESET:
  133. if (record->event.pressed) {
  134. reset_keyboard();
  135. }
  136. return false;
  137. break;
  138. case DEBUG:
  139. if (record->event.pressed) {
  140. print("\nDEBUG: enabled.\n");
  141. debug_enable = true;
  142. }
  143. return false;
  144. break;
  145. #ifdef RGBLIGHT_ENABLE
  146. case RGB_TOG:
  147. if (record->event.pressed) {
  148. rgblight_toggle();
  149. }
  150. return false;
  151. break;
  152. case RGB_MOD:
  153. if (record->event.pressed) {
  154. rgblight_step();
  155. }
  156. return false;
  157. break;
  158. case RGB_HUI:
  159. if (record->event.pressed) {
  160. rgblight_increase_hue();
  161. }
  162. return false;
  163. break;
  164. case RGB_HUD:
  165. if (record->event.pressed) {
  166. rgblight_decrease_hue();
  167. }
  168. return false;
  169. break;
  170. case RGB_SAI:
  171. if (record->event.pressed) {
  172. rgblight_increase_sat();
  173. }
  174. return false;
  175. break;
  176. case RGB_SAD:
  177. if (record->event.pressed) {
  178. rgblight_decrease_sat();
  179. }
  180. return false;
  181. break;
  182. case RGB_VAI:
  183. if (record->event.pressed) {
  184. rgblight_increase_val();
  185. }
  186. return false;
  187. break;
  188. case RGB_VAD:
  189. if (record->event.pressed) {
  190. rgblight_decrease_val();
  191. }
  192. return false;
  193. break;
  194. #endif
  195. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  196. if (record->event.pressed) {
  197. // MAGIC actions (BOOTMAGIC without the boot)
  198. if (!eeconfig_is_enabled()) {
  199. eeconfig_init();
  200. }
  201. /* keymap config */
  202. keymap_config.raw = eeconfig_read_keymap();
  203. switch (keycode)
  204. {
  205. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  206. keymap_config.swap_control_capslock = true;
  207. break;
  208. case MAGIC_CAPSLOCK_TO_CONTROL:
  209. keymap_config.capslock_to_control = true;
  210. break;
  211. case MAGIC_SWAP_LALT_LGUI:
  212. keymap_config.swap_lalt_lgui = true;
  213. break;
  214. case MAGIC_SWAP_RALT_RGUI:
  215. keymap_config.swap_ralt_rgui = true;
  216. break;
  217. case MAGIC_NO_GUI:
  218. keymap_config.no_gui = true;
  219. break;
  220. case MAGIC_SWAP_GRAVE_ESC:
  221. keymap_config.swap_grave_esc = true;
  222. break;
  223. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  224. keymap_config.swap_backslash_backspace = true;
  225. break;
  226. case MAGIC_HOST_NKRO:
  227. keymap_config.nkro = true;
  228. break;
  229. case MAGIC_SWAP_ALT_GUI:
  230. keymap_config.swap_lalt_lgui = true;
  231. keymap_config.swap_ralt_rgui = true;
  232. break;
  233. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  234. keymap_config.swap_control_capslock = false;
  235. break;
  236. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  237. keymap_config.capslock_to_control = false;
  238. break;
  239. case MAGIC_UNSWAP_LALT_LGUI:
  240. keymap_config.swap_lalt_lgui = false;
  241. break;
  242. case MAGIC_UNSWAP_RALT_RGUI:
  243. keymap_config.swap_ralt_rgui = false;
  244. break;
  245. case MAGIC_UNNO_GUI:
  246. keymap_config.no_gui = false;
  247. break;
  248. case MAGIC_UNSWAP_GRAVE_ESC:
  249. keymap_config.swap_grave_esc = false;
  250. break;
  251. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  252. keymap_config.swap_backslash_backspace = false;
  253. break;
  254. case MAGIC_UNHOST_NKRO:
  255. keymap_config.nkro = false;
  256. break;
  257. case MAGIC_UNSWAP_ALT_GUI:
  258. keymap_config.swap_lalt_lgui = false;
  259. keymap_config.swap_ralt_rgui = false;
  260. break;
  261. case MAGIC_TOGGLE_NKRO:
  262. keymap_config.nkro = !keymap_config.nkro;
  263. break;
  264. default:
  265. break;
  266. }
  267. eeconfig_update_keymap(keymap_config.raw);
  268. clear_keyboard(); // clear to prevent stuck keys
  269. return false;
  270. }
  271. break;
  272. case KC_LSPO: {
  273. if (record->event.pressed) {
  274. shift_interrupted[0] = false;
  275. scs_timer = timer_read ();
  276. register_mods(MOD_BIT(KC_LSFT));
  277. }
  278. else {
  279. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  280. if (get_mods() & MOD_BIT(KC_RSFT)) {
  281. shift_interrupted[0] = true;
  282. shift_interrupted[1] = true;
  283. }
  284. #endif
  285. if (!shift_interrupted[0] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  286. register_code(LSPO_KEY);
  287. unregister_code(LSPO_KEY);
  288. }
  289. unregister_mods(MOD_BIT(KC_LSFT));
  290. }
  291. return false;
  292. // break;
  293. }
  294. case KC_RSPC: {
  295. if (record->event.pressed) {
  296. shift_interrupted[1] = false;
  297. scs_timer = timer_read ();
  298. register_mods(MOD_BIT(KC_RSFT));
  299. }
  300. else {
  301. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  302. if (get_mods() & MOD_BIT(KC_LSFT)) {
  303. shift_interrupted[0] = true;
  304. shift_interrupted[1] = true;
  305. }
  306. #endif
  307. if (!shift_interrupted[1] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  308. register_code(RSPC_KEY);
  309. unregister_code(RSPC_KEY);
  310. }
  311. unregister_mods(MOD_BIT(KC_RSFT));
  312. }
  313. return false;
  314. // break;
  315. }
  316. default: {
  317. shift_interrupted[0] = true;
  318. shift_interrupted[1] = true;
  319. break;
  320. }
  321. }
  322. return process_action_kb(record);
  323. }
  324. const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
  325. 0, 0, 0, 0, 0, 0, 0, 0,
  326. 0, 0, 0, 0, 0, 0, 0, 0,
  327. 0, 0, 0, 0, 0, 0, 0, 0,
  328. 0, 0, 0, 0, 0, 0, 0, 0,
  329. 0, 1, 1, 1, 1, 1, 1, 0,
  330. 1, 1, 1, 1, 0, 0, 0, 0,
  331. 0, 0, 0, 0, 0, 0, 0, 0,
  332. 0, 0, 1, 0, 1, 0, 1, 1,
  333. 1, 1, 1, 1, 1, 1, 1, 1,
  334. 1, 1, 1, 1, 1, 1, 1, 1,
  335. 1, 1, 1, 1, 1, 1, 1, 1,
  336. 1, 1, 1, 0, 0, 0, 1, 1,
  337. 0, 0, 0, 0, 0, 0, 0, 0,
  338. 0, 0, 0, 0, 0, 0, 0, 0,
  339. 0, 0, 0, 0, 0, 0, 0, 0,
  340. 0, 0, 0, 1, 1, 1, 1, 0
  341. };
  342. const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
  343. 0, 0, 0, 0, 0, 0, 0, 0,
  344. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  345. 0, 0, 0, 0, 0, 0, 0, 0,
  346. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  347. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  348. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  349. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  350. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  351. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  352. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  353. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  354. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  355. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  356. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  357. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  358. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  359. };
  360. /* for users whose OSes are set to Colemak */
  361. #if 0
  362. #include "keymap_colemak.h"
  363. const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
  364. 0, 0, 0, 0, 0, 0, 0, 0,
  365. 0, 0, 0, 0, 0, 0, 0, 0,
  366. 0, 0, 0, 0, 0, 0, 0, 0,
  367. 0, 0, 0, 0, 0, 0, 0, 0,
  368. 0, 1, 1, 1, 1, 1, 1, 0,
  369. 1, 1, 1, 1, 0, 0, 0, 0,
  370. 0, 0, 0, 0, 0, 0, 0, 0,
  371. 0, 0, 1, 0, 1, 0, 1, 1,
  372. 1, 1, 1, 1, 1, 1, 1, 1,
  373. 1, 1, 1, 1, 1, 1, 1, 1,
  374. 1, 1, 1, 1, 1, 1, 1, 1,
  375. 1, 1, 1, 0, 0, 0, 1, 1,
  376. 0, 0, 0, 0, 0, 0, 0, 0,
  377. 0, 0, 0, 0, 0, 0, 0, 0,
  378. 0, 0, 0, 0, 0, 0, 0, 0,
  379. 0, 0, 0, 1, 1, 1, 1, 0
  380. };
  381. const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
  382. 0, 0, 0, 0, 0, 0, 0, 0,
  383. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  384. 0, 0, 0, 0, 0, 0, 0, 0,
  385. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  386. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  387. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  388. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  389. KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  390. KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  391. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  392. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  393. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  394. KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  395. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  396. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  397. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  398. };
  399. #endif
  400. void send_string(const char *str) {
  401. while (1) {
  402. uint8_t keycode;
  403. uint8_t ascii_code = pgm_read_byte(str);
  404. if (!ascii_code) break;
  405. keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
  406. if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
  407. register_code(KC_LSFT);
  408. register_code(keycode);
  409. unregister_code(keycode);
  410. unregister_code(KC_LSFT);
  411. }
  412. else {
  413. register_code(keycode);
  414. unregister_code(keycode);
  415. }
  416. ++str;
  417. }
  418. }
  419. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  420. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  421. layer_on(layer3);
  422. } else {
  423. layer_off(layer3);
  424. }
  425. }
  426. void tap_random_base64(void) {
  427. #if defined(__AVR_ATmega32U4__)
  428. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  429. #else
  430. uint8_t key = rand() % 64;
  431. #endif
  432. switch (key) {
  433. case 0 ... 25:
  434. register_code(KC_LSFT);
  435. register_code(key + KC_A);
  436. unregister_code(key + KC_A);
  437. unregister_code(KC_LSFT);
  438. break;
  439. case 26 ... 51:
  440. register_code(key - 26 + KC_A);
  441. unregister_code(key - 26 + KC_A);
  442. break;
  443. case 52:
  444. register_code(KC_0);
  445. unregister_code(KC_0);
  446. break;
  447. case 53 ... 61:
  448. register_code(key - 53 + KC_1);
  449. unregister_code(key - 53 + KC_1);
  450. break;
  451. case 62:
  452. register_code(KC_LSFT);
  453. register_code(KC_EQL);
  454. unregister_code(KC_EQL);
  455. unregister_code(KC_LSFT);
  456. break;
  457. case 63:
  458. register_code(KC_SLSH);
  459. unregister_code(KC_SLSH);
  460. break;
  461. }
  462. }
  463. void matrix_init_quantum() {
  464. #ifdef BACKLIGHT_ENABLE
  465. backlight_init_ports();
  466. #endif
  467. matrix_init_kb();
  468. }
  469. void matrix_scan_quantum() {
  470. #ifdef AUDIO_ENABLE
  471. matrix_scan_music();
  472. #endif
  473. #ifdef TAP_DANCE_ENABLE
  474. matrix_scan_tap_dance();
  475. #endif
  476. matrix_scan_kb();
  477. }
  478. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  479. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  480. #if BACKLIGHT_PIN == B7
  481. # define COM1x1 COM1C1
  482. # define OCR1x OCR1C
  483. #elif BACKLIGHT_PIN == B6
  484. # define COM1x1 COM1B1
  485. # define OCR1x OCR1B
  486. #elif BACKLIGHT_PIN == B5
  487. # define COM1x1 COM1A1
  488. # define OCR1x OCR1A
  489. #else
  490. # error "Backlight pin not supported - use B5, B6, or B7"
  491. #endif
  492. __attribute__ ((weak))
  493. void backlight_init_ports(void)
  494. {
  495. // Setup backlight pin as output and output low.
  496. // DDRx |= n
  497. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  498. // PORTx &= ~n
  499. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  500. // Use full 16-bit resolution.
  501. ICR1 = 0xFFFF;
  502. // I could write a wall of text here to explain... but TL;DW
  503. // Go read the ATmega32u4 datasheet.
  504. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  505. // Pin PB7 = OCR1C (Timer 1, Channel C)
  506. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  507. // (i.e. start high, go low when counter matches.)
  508. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  509. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  510. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  511. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  512. backlight_init();
  513. #ifdef BACKLIGHT_BREATHING
  514. breathing_defaults();
  515. #endif
  516. }
  517. __attribute__ ((weak))
  518. void backlight_set(uint8_t level)
  519. {
  520. // Prevent backlight blink on lowest level
  521. // PORTx &= ~n
  522. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  523. if ( level == 0 ) {
  524. // Turn off PWM control on backlight pin, revert to output low.
  525. TCCR1A &= ~(_BV(COM1x1));
  526. OCR1x = 0x0;
  527. } else if ( level == BACKLIGHT_LEVELS ) {
  528. // Turn on PWM control of backlight pin
  529. TCCR1A |= _BV(COM1x1);
  530. // Set the brightness
  531. OCR1x = 0xFFFF;
  532. } else {
  533. // Turn on PWM control of backlight pin
  534. TCCR1A |= _BV(COM1x1);
  535. // Set the brightness
  536. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  537. }
  538. #ifdef BACKLIGHT_BREATHING
  539. breathing_intensity_default();
  540. #endif
  541. }
  542. #ifdef BACKLIGHT_BREATHING
  543. #define BREATHING_NO_HALT 0
  544. #define BREATHING_HALT_OFF 1
  545. #define BREATHING_HALT_ON 2
  546. static uint8_t breath_intensity;
  547. static uint8_t breath_speed;
  548. static uint16_t breathing_index;
  549. static uint8_t breathing_halt;
  550. void breathing_enable(void)
  551. {
  552. if (get_backlight_level() == 0)
  553. {
  554. breathing_index = 0;
  555. }
  556. else
  557. {
  558. // Set breathing_index to be at the midpoint (brightest point)
  559. breathing_index = 0x20 << breath_speed;
  560. }
  561. breathing_halt = BREATHING_NO_HALT;
  562. // Enable breathing interrupt
  563. TIMSK1 |= _BV(OCIE1A);
  564. }
  565. void breathing_pulse(void)
  566. {
  567. if (get_backlight_level() == 0)
  568. {
  569. breathing_index = 0;
  570. }
  571. else
  572. {
  573. // Set breathing_index to be at the midpoint + 1 (brightest point)
  574. breathing_index = 0x21 << breath_speed;
  575. }
  576. breathing_halt = BREATHING_HALT_ON;
  577. // Enable breathing interrupt
  578. TIMSK1 |= _BV(OCIE1A);
  579. }
  580. void breathing_disable(void)
  581. {
  582. // Disable breathing interrupt
  583. TIMSK1 &= ~_BV(OCIE1A);
  584. backlight_set(get_backlight_level());
  585. }
  586. void breathing_self_disable(void)
  587. {
  588. if (get_backlight_level() == 0)
  589. {
  590. breathing_halt = BREATHING_HALT_OFF;
  591. }
  592. else
  593. {
  594. breathing_halt = BREATHING_HALT_ON;
  595. }
  596. //backlight_set(get_backlight_level());
  597. }
  598. void breathing_toggle(void)
  599. {
  600. if (!is_breathing())
  601. {
  602. if (get_backlight_level() == 0)
  603. {
  604. breathing_index = 0;
  605. }
  606. else
  607. {
  608. // Set breathing_index to be at the midpoint + 1 (brightest point)
  609. breathing_index = 0x21 << breath_speed;
  610. }
  611. breathing_halt = BREATHING_NO_HALT;
  612. }
  613. // Toggle breathing interrupt
  614. TIMSK1 ^= _BV(OCIE1A);
  615. // Restore backlight level
  616. if (!is_breathing())
  617. {
  618. backlight_set(get_backlight_level());
  619. }
  620. }
  621. bool is_breathing(void)
  622. {
  623. return (TIMSK1 && _BV(OCIE1A));
  624. }
  625. void breathing_intensity_default(void)
  626. {
  627. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  628. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  629. }
  630. void breathing_intensity_set(uint8_t value)
  631. {
  632. breath_intensity = value;
  633. }
  634. void breathing_speed_default(void)
  635. {
  636. breath_speed = 4;
  637. }
  638. void breathing_speed_set(uint8_t value)
  639. {
  640. bool is_breathing_now = is_breathing();
  641. uint8_t old_breath_speed = breath_speed;
  642. if (is_breathing_now)
  643. {
  644. // Disable breathing interrupt
  645. TIMSK1 &= ~_BV(OCIE1A);
  646. }
  647. breath_speed = value;
  648. if (is_breathing_now)
  649. {
  650. // Adjust index to account for new speed
  651. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  652. // Enable breathing interrupt
  653. TIMSK1 |= _BV(OCIE1A);
  654. }
  655. }
  656. void breathing_speed_inc(uint8_t value)
  657. {
  658. if ((uint16_t)(breath_speed - value) > 10 )
  659. {
  660. breathing_speed_set(0);
  661. }
  662. else
  663. {
  664. breathing_speed_set(breath_speed - value);
  665. }
  666. }
  667. void breathing_speed_dec(uint8_t value)
  668. {
  669. if ((uint16_t)(breath_speed + value) > 10 )
  670. {
  671. breathing_speed_set(10);
  672. }
  673. else
  674. {
  675. breathing_speed_set(breath_speed + value);
  676. }
  677. }
  678. void breathing_defaults(void)
  679. {
  680. breathing_intensity_default();
  681. breathing_speed_default();
  682. breathing_halt = BREATHING_NO_HALT;
  683. }
  684. /* Breathing Sleep LED brighness(PWM On period) table
  685. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  686. *
  687. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  688. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  689. */
  690. static const uint8_t breathing_table[64] PROGMEM = {
  691. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  692. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  693. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  694. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  695. };
  696. ISR(TIMER1_COMPA_vect)
  697. {
  698. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  699. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  700. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  701. {
  702. // Disable breathing interrupt
  703. TIMSK1 &= ~_BV(OCIE1A);
  704. }
  705. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  706. }
  707. #endif // breathing
  708. #else // backlight
  709. __attribute__ ((weak))
  710. void backlight_init_ports(void)
  711. {
  712. }
  713. __attribute__ ((weak))
  714. void backlight_set(uint8_t level)
  715. {
  716. }
  717. #endif // backlight
  718. // Functions for spitting out values
  719. //
  720. void send_dword(uint32_t number) { // this might not actually work
  721. uint16_t word = (number >> 16);
  722. send_word(word);
  723. send_word(number & 0xFFFFUL);
  724. }
  725. void send_word(uint16_t number) {
  726. uint8_t byte = number >> 8;
  727. send_byte(byte);
  728. send_byte(number & 0xFF);
  729. }
  730. void send_byte(uint8_t number) {
  731. uint8_t nibble = number >> 4;
  732. send_nibble(nibble);
  733. send_nibble(number & 0xF);
  734. }
  735. void send_nibble(uint8_t number) {
  736. switch (number) {
  737. case 0:
  738. register_code(KC_0);
  739. unregister_code(KC_0);
  740. break;
  741. case 1 ... 9:
  742. register_code(KC_1 + (number - 1));
  743. unregister_code(KC_1 + (number - 1));
  744. break;
  745. case 0xA ... 0xF:
  746. register_code(KC_A + (number - 0xA));
  747. unregister_code(KC_A + (number - 0xA));
  748. break;
  749. }
  750. }
  751. void api_send_unicode(uint32_t unicode) {
  752. #ifdef API_ENABLE
  753. uint8_t chunk[4];
  754. dword_to_bytes(unicode, chunk);
  755. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  756. #endif
  757. }
  758. __attribute__ ((weak))
  759. void led_set_user(uint8_t usb_led) {
  760. }
  761. __attribute__ ((weak))
  762. void led_set_kb(uint8_t usb_led) {
  763. led_set_user(usb_led);
  764. }
  765. __attribute__ ((weak))
  766. void led_init_ports(void)
  767. {
  768. }
  769. __attribute__ ((weak))
  770. void led_set(uint8_t usb_led)
  771. {
  772. // Example LED Code
  773. //
  774. // // Using PE6 Caps Lock LED
  775. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  776. // {
  777. // // Output high.
  778. // DDRE |= (1<<6);
  779. // PORTE |= (1<<6);
  780. // }
  781. // else
  782. // {
  783. // // Output low.
  784. // DDRE &= ~(1<<6);
  785. // PORTE &= ~(1<<6);
  786. // }
  787. led_set_kb(usb_led);
  788. }
  789. //------------------------------------------------------------------------------
  790. // Override these functions in your keymap file to play different tunes on
  791. // different events such as startup and bootloader jump
  792. __attribute__ ((weak))
  793. void startup_user() {}
  794. __attribute__ ((weak))
  795. void shutdown_user() {}
  796. //------------------------------------------------------------------------------