matrix.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
  3. Copyright 2017 Erin Call <hello@erincall.com>
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #include <avr/io.h>
  18. #include "wait.h"
  19. #include "action_layer.h"
  20. #include "print.h"
  21. #include "debug.h"
  22. #include "util.h"
  23. #include "matrix.h"
  24. #include "dactyl.h"
  25. #include "i2cmaster.h"
  26. #include "timer.h"
  27. /* Set 0 if debouncing isn't needed */
  28. #ifndef DEBOUNCE
  29. # define DEBOUNCE 5
  30. #endif
  31. #if (DEBOUNCE > 0)
  32. static uint16_t debouncing_time;
  33. static bool debouncing = false;
  34. #endif
  35. #ifdef MATRIX_MASKED
  36. extern const matrix_row_t matrix_mask[];
  37. #endif
  38. #if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
  39. static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
  40. static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
  41. static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
  42. #endif
  43. /* matrix state(1:on, 0:off) */
  44. static matrix_row_t matrix[MATRIX_ROWS];
  45. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  46. #if (DIODE_DIRECTION == COL2ROW)
  47. static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
  48. static void init_cols(void);
  49. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  50. static void unselect_rows(void);
  51. static void select_row(uint8_t row);
  52. static void unselect_row(uint8_t row);
  53. #elif (DIODE_DIRECTION == ROW2COL)
  54. static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
  55. static void init_rows(void);
  56. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  57. static void unselect_cols(void);
  58. static void select_col(uint8_t col);
  59. static void unselect_col(uint8_t col);
  60. #endif
  61. static uint8_t expander_reset_loop;
  62. uint8_t expander_status;
  63. uint8_t expander_input_pin_mask;
  64. bool i2c_initialized = false;
  65. #define ROW_SHIFTER ((matrix_row_t)1)
  66. __attribute__ ((weak))
  67. void matrix_init_user(void) {}
  68. __attribute__ ((weak))
  69. void matrix_scan_user(void) {}
  70. __attribute__ ((weak))
  71. void matrix_init_kb(void) {
  72. matrix_init_user();
  73. }
  74. __attribute__ ((weak))
  75. void matrix_scan_kb(void) {
  76. matrix_scan_user();
  77. }
  78. inline
  79. uint8_t matrix_rows(void)
  80. {
  81. return MATRIX_ROWS;
  82. }
  83. inline
  84. uint8_t matrix_cols(void)
  85. {
  86. return MATRIX_COLS;
  87. }
  88. void matrix_init(void)
  89. {
  90. init_expander();
  91. #if (DIODE_DIRECTION == COL2ROW)
  92. unselect_rows();
  93. init_cols();
  94. #elif (DIODE_DIRECTION == ROW2COL)
  95. unselect_cols();
  96. init_rows();
  97. #endif
  98. // initialize matrix state: all keys off
  99. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  100. matrix[i] = 0;
  101. matrix_debouncing[i] = 0;
  102. }
  103. matrix_init_quantum();
  104. }
  105. void init_expander(void) {
  106. if (! i2c_initialized) {
  107. i2c_init();
  108. wait_us(1000000);
  109. }
  110. if (! expander_input_pin_mask) {
  111. #if (DIODE_DIRECTION == COL2ROW)
  112. for (int col = 0; col < MATRIX_COLS; col++) {
  113. if (col_expanded[col]) {
  114. expander_input_pin_mask |= (1 << expander_col_pins[col]);
  115. }
  116. }
  117. #elif (DIODE_DIRECTION == ROW2COL)
  118. for (int row = 0; row < MATRIX_ROWS; row++) {
  119. expander_input_pin_mask |= (1 << expander_row_pins[row]);
  120. }
  121. #endif
  122. }
  123. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  124. expander_status = i2c_write(IODIRA); if (expander_status) goto out;
  125. /*
  126. Pin direction and pull-up depends on both the diode direction
  127. and on whether the column register is GPIOA or GPIOB
  128. +-------+---------------+---------------+
  129. | | ROW2COL | COL2ROW |
  130. +-------+---------------+---------------+
  131. | GPIOA | input, output | output, input |
  132. +-------+---------------+---------------+
  133. | GPIOB | output, input | input, output |
  134. +-------+---------------+---------------+
  135. */
  136. #if (EXPANDER_COL_REGISTER == GPIOA)
  137. # if (DIODE_DIRECTION == COL2ROW)
  138. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  139. expander_status = i2c_write(0); if (expander_status) goto out;
  140. # elif (DIODE_DIRECTION == ROW2COL)
  141. expander_status = i2c_write(0); if (expander_status) goto out;
  142. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  143. # endif
  144. #elif (EXPANDER_COL_REGISTER == GPIOB)
  145. # if (DIODE_DIRECTION == COL2ROW)
  146. expander_status = i2c_write(0); if (expander_status) goto out;
  147. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  148. # elif (DIODE_DIRECTION == ROW2COL)
  149. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  150. expander_status = i2c_write(0); if (expander_status) goto out;
  151. # endif
  152. #endif
  153. i2c_stop();
  154. // set pull-up
  155. // - unused : off : 0
  156. // - input : on : 1
  157. // - driving : off : 0
  158. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  159. expander_status = i2c_write(GPPUA); if (expander_status) goto out;
  160. #if (EXPANDER_COL_REGISTER == GPIOA)
  161. # if (DIODE_DIRECTION == COL2ROW)
  162. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  163. expander_status = i2c_write(0); if (expander_status) goto out;
  164. # elif (DIODE_DIRECTION == ROW2COL)
  165. expander_status = i2c_write(0); if (expander_status) goto out;
  166. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  167. # endif
  168. #elif (EXPANDER_COL_REGISTER == GPIOB)
  169. # if (DIODE_DIRECTION == COL2ROW)
  170. expander_status = i2c_write(0); if (expander_status) goto out;
  171. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  172. # elif (DIODE_DIRECTION == ROW2COL)
  173. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  174. expander_status = i2c_write(0); if (expander_status) goto out;
  175. # endif
  176. #endif
  177. out:
  178. i2c_stop();
  179. }
  180. uint8_t matrix_scan(void)
  181. {
  182. if (expander_status) { // if there was an error
  183. if (++expander_reset_loop == 0) {
  184. // since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
  185. // this will be approx bit more frequent than once per second
  186. print("trying to reset expander\n");
  187. init_expander();
  188. if (expander_status) {
  189. print("left side not responding\n");
  190. } else {
  191. print("left side attached\n");
  192. }
  193. }
  194. }
  195. #if (DIODE_DIRECTION == COL2ROW)
  196. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  197. # if (DEBOUNCE > 0)
  198. bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
  199. if (matrix_changed) {
  200. debouncing = true;
  201. debouncing_time = timer_read();
  202. }
  203. # else
  204. read_cols_on_row(matrix, current_row);
  205. # endif
  206. }
  207. #elif (DIODE_DIRECTION == ROW2COL)
  208. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  209. # if (DEBOUNCE > 0)
  210. bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
  211. if (matrix_changed) {
  212. debouncing = true;
  213. debouncing_time = timer_read();
  214. }
  215. # else
  216. read_rows_on_col(matrix, current_col);
  217. # endif
  218. }
  219. #endif
  220. # if (DEBOUNCE > 0)
  221. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) {
  222. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  223. matrix[i] = matrix_debouncing[i];
  224. }
  225. debouncing = false;
  226. }
  227. # endif
  228. matrix_scan_quantum();
  229. return 1;
  230. }
  231. bool matrix_is_modified(void) // deprecated and evidently not called.
  232. {
  233. #if (DEBOUNCE > 0)
  234. if (debouncing) return false;
  235. #endif
  236. return true;
  237. }
  238. inline
  239. bool matrix_is_on(uint8_t row, uint8_t col)
  240. {
  241. return (matrix[row] & (ROW_SHIFTER << col));
  242. }
  243. inline
  244. matrix_row_t matrix_get_row(uint8_t row)
  245. {
  246. #ifdef MATRIX_MASKED
  247. return matrix[row] & matrix_mask[row];
  248. #else
  249. return matrix[row];
  250. #endif
  251. }
  252. void matrix_print(void)
  253. {
  254. print("\nr/c 0123456789ABCDEF\n");
  255. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  256. phex(row); print(": ");
  257. pbin_reverse16(matrix_get_row(row));
  258. print("\n");
  259. }
  260. }
  261. uint8_t matrix_key_count(void)
  262. {
  263. uint8_t count = 0;
  264. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  265. count += bitpop16(matrix[i]);
  266. }
  267. return count;
  268. }
  269. #if (DIODE_DIRECTION == COL2ROW)
  270. static void init_cols(void) {
  271. for (uint8_t x = 0; x < MATRIX_COLS; x++) {
  272. if (! col_expanded[x]) {
  273. uint8_t pin = onboard_col_pins[x];
  274. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  275. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  276. }
  277. }
  278. }
  279. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  280. // Store last value of row prior to reading
  281. matrix_row_t last_row_value = current_matrix[current_row];
  282. // Clear data in matrix row
  283. current_matrix[current_row] = 0;
  284. // Select row and wait for row selection to stabilize
  285. select_row(current_row);
  286. wait_us(30);
  287. // Read columns from expander, unless it's in an error state
  288. if (! expander_status) {
  289. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  290. expander_status = i2c_write(EXPANDER_COL_REGISTER); if (expander_status) goto out;
  291. expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
  292. current_matrix[current_row] |= (~i2c_readNak()) & expander_input_pin_mask;
  293. out:
  294. i2c_stop();
  295. }
  296. // Read columns from onboard pins
  297. for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  298. if (! col_expanded[col_index]) {
  299. uint8_t pin = onboard_col_pins[col_index];
  300. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  301. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  302. }
  303. }
  304. unselect_row(current_row);
  305. return (last_row_value != current_matrix[current_row]);
  306. }
  307. static void select_row(uint8_t row) {
  308. // select on expander, unless it's in an error state
  309. if (! expander_status) {
  310. // set active row low : 0
  311. // set other rows hi-Z : 1
  312. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  313. expander_status = i2c_write(EXPANDER_ROW_REGISTER); if (expander_status) goto out;
  314. expander_status = i2c_write(0xFF & ~(1<<row)); if (expander_status) goto out;
  315. out:
  316. i2c_stop();
  317. }
  318. // select on teensy
  319. uint8_t pin = onboard_row_pins[row];
  320. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  321. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  322. }
  323. static void unselect_row(uint8_t row)
  324. {
  325. // No need to explicitly unselect expander pins--their I/O state is
  326. // set simultaneously, with a single bitmask sent to i2c_write. When
  327. // select_row selects a single pin, it implicitly unselects all the
  328. // other ones.
  329. // unselect on teensy
  330. uint8_t pin = onboard_row_pins[row];
  331. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
  332. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // LOW
  333. }
  334. static void unselect_rows(void) {
  335. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  336. unselect_row(x);
  337. }
  338. }
  339. #elif (DIODE_DIRECTION == ROW2COL)
  340. static void init_rows(void)
  341. {
  342. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  343. uint8_t pin = onboard_row_pins[x];
  344. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  345. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  346. }
  347. }
  348. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  349. {
  350. bool matrix_changed = false;
  351. uint8_t column_state = 0;
  352. //select col and wait for selection to stabilize
  353. select_col(current_col);
  354. wait_us(30);
  355. if (current_col < 6) {
  356. // read rows from expander
  357. if (expander_status) {
  358. // it's already in an error state; nothing we can do
  359. return false;
  360. }
  361. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  362. expander_status = i2c_write(EXPANDER_ROW_REGISTER); if (expander_status) goto out;
  363. expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
  364. column_state = i2c_readNak();
  365. out:
  366. i2c_stop();
  367. column_state = ~column_state;
  368. } else {
  369. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  370. if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
  371. column_state |= (1 << current_row);
  372. }
  373. }
  374. }
  375. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  376. // Store last value of row prior to reading
  377. matrix_row_t last_row_value = current_matrix[current_row];
  378. if (column_state & (1 << current_row)) {
  379. // key closed; set state bit in matrix
  380. current_matrix[current_row] |= (ROW_SHIFTER << current_col);
  381. } else {
  382. // key open; clear state bit in matrix
  383. current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
  384. }
  385. // Determine whether the matrix changed state
  386. if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
  387. {
  388. matrix_changed = true;
  389. }
  390. }
  391. unselect_col(current_col);
  392. return matrix_changed;
  393. }
  394. static void select_col(uint8_t col)
  395. {
  396. if (col_expanded[col]) {
  397. // select on expander
  398. if (expander_status) { // if there was an error
  399. // do nothing
  400. } else {
  401. // set active col low : 0
  402. // set other cols hi-Z : 1
  403. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  404. expander_status = i2c_write(EXPANDER_COL_REGISTER); if (expander_status) goto out;
  405. expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
  406. out:
  407. i2c_stop();
  408. }
  409. } else {
  410. // select on teensy
  411. uint8_t pin = onboard_col_pins[col];
  412. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  413. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  414. }
  415. }
  416. static void unselect_col(uint8_t col)
  417. {
  418. if (col_expanded[col]) {
  419. // No need to explicitly unselect expander pins--their I/O state is
  420. // set simultaneously, with a single bitmask sent to i2c_write. When
  421. // select_col selects a single pin, it implicitly unselects all the
  422. // other ones.
  423. } else {
  424. // unselect on teensy
  425. uint8_t pin = onboard_col_pins[col];
  426. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  427. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  428. }
  429. }
  430. static void unselect_cols(void)
  431. {
  432. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  433. unselect_col(x);
  434. }
  435. }
  436. #endif