quantum.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #ifdef PROTOCOL_LUFA
  18. #include "outputselect.h"
  19. #endif
  20. #ifndef TAPPING_TERM
  21. #define TAPPING_TERM 200
  22. #endif
  23. #ifndef BREATHING_PERIOD
  24. #define BREATHING_PERIOD 6
  25. #endif
  26. #include "backlight.h"
  27. extern backlight_config_t backlight_config;
  28. #ifdef FAUXCLICKY_ENABLE
  29. #include "fauxclicky.h"
  30. #endif
  31. #ifdef API_ENABLE
  32. #include "api.h"
  33. #endif
  34. #ifdef MIDI_ENABLE
  35. #include "process_midi.h"
  36. #endif
  37. #ifdef ENCODER_ENABLE
  38. #include "encoder.h"
  39. #endif
  40. #ifdef AUDIO_ENABLE
  41. #ifndef GOODBYE_SONG
  42. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  43. #endif
  44. #ifndef AG_NORM_SONG
  45. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  46. #endif
  47. #ifndef AG_SWAP_SONG
  48. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  49. #endif
  50. float goodbye_song[][2] = GOODBYE_SONG;
  51. float ag_norm_song[][2] = AG_NORM_SONG;
  52. float ag_swap_song[][2] = AG_SWAP_SONG;
  53. #ifdef DEFAULT_LAYER_SONGS
  54. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  55. #endif
  56. #endif
  57. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  58. switch (code) {
  59. case QK_MODS ... QK_MODS_MAX:
  60. break;
  61. default:
  62. return;
  63. }
  64. if (code & QK_LCTL)
  65. f(KC_LCTL);
  66. if (code & QK_LSFT)
  67. f(KC_LSFT);
  68. if (code & QK_LALT)
  69. f(KC_LALT);
  70. if (code & QK_LGUI)
  71. f(KC_LGUI);
  72. if (code < QK_RMODS_MIN) return;
  73. if (code & QK_RCTL)
  74. f(KC_RCTL);
  75. if (code & QK_RSFT)
  76. f(KC_RSFT);
  77. if (code & QK_RALT)
  78. f(KC_RALT);
  79. if (code & QK_RGUI)
  80. f(KC_RGUI);
  81. }
  82. static inline void qk_register_weak_mods(uint8_t kc) {
  83. add_weak_mods(MOD_BIT(kc));
  84. send_keyboard_report();
  85. }
  86. static inline void qk_unregister_weak_mods(uint8_t kc) {
  87. del_weak_mods(MOD_BIT(kc));
  88. send_keyboard_report();
  89. }
  90. static inline void qk_register_mods(uint8_t kc) {
  91. add_weak_mods(MOD_BIT(kc));
  92. send_keyboard_report();
  93. }
  94. static inline void qk_unregister_mods(uint8_t kc) {
  95. del_weak_mods(MOD_BIT(kc));
  96. send_keyboard_report();
  97. }
  98. void register_code16 (uint16_t code) {
  99. if (IS_MOD(code) || code == KC_NO) {
  100. do_code16 (code, qk_register_mods);
  101. } else {
  102. do_code16 (code, qk_register_weak_mods);
  103. }
  104. register_code (code);
  105. }
  106. void unregister_code16 (uint16_t code) {
  107. unregister_code (code);
  108. if (IS_MOD(code) || code == KC_NO) {
  109. do_code16 (code, qk_unregister_mods);
  110. } else {
  111. do_code16 (code, qk_unregister_weak_mods);
  112. }
  113. }
  114. __attribute__ ((weak))
  115. bool process_action_kb(keyrecord_t *record) {
  116. return true;
  117. }
  118. __attribute__ ((weak))
  119. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  120. return process_record_user(keycode, record);
  121. }
  122. __attribute__ ((weak))
  123. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  124. return true;
  125. }
  126. void reset_keyboard(void) {
  127. clear_keyboard();
  128. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  129. process_midi_all_notes_off();
  130. #endif
  131. #ifdef AUDIO_ENABLE
  132. #ifndef NO_MUSIC_MODE
  133. music_all_notes_off();
  134. #endif
  135. uint16_t timer_start = timer_read();
  136. PLAY_SONG(goodbye_song);
  137. shutdown_user();
  138. while(timer_elapsed(timer_start) < 250)
  139. wait_ms(1);
  140. stop_all_notes();
  141. #else
  142. shutdown_user();
  143. wait_ms(250);
  144. #endif
  145. // this is also done later in bootloader.c - not sure if it's neccesary here
  146. #ifdef BOOTLOADER_CATERINA
  147. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  148. #endif
  149. bootloader_jump();
  150. }
  151. // Shift / paren setup
  152. #ifndef LSPO_KEY
  153. #define LSPO_KEY KC_9
  154. #endif
  155. #ifndef RSPC_KEY
  156. #define RSPC_KEY KC_0
  157. #endif
  158. // Shift / Enter setup
  159. #ifndef SFTENT_KEY
  160. #define SFTENT_KEY KC_ENT
  161. #endif
  162. static bool shift_interrupted[2] = {0, 0};
  163. static uint16_t scs_timer[2] = {0, 0};
  164. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  165. * Used to ensure that the correct keycode is released if the key is released.
  166. */
  167. static bool grave_esc_was_shifted = false;
  168. bool process_record_quantum(keyrecord_t *record) {
  169. /* This gets the keycode from the key pressed */
  170. keypos_t key = record->event.key;
  171. uint16_t keycode;
  172. #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
  173. /* TODO: Use store_or_get_action() or a similar function. */
  174. if (!disable_action_cache) {
  175. uint8_t layer;
  176. if (record->event.pressed) {
  177. layer = layer_switch_get_layer(key);
  178. update_source_layers_cache(key, layer);
  179. } else {
  180. layer = read_source_layers_cache(key);
  181. }
  182. keycode = keymap_key_to_keycode(layer, key);
  183. } else
  184. #endif
  185. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  186. // This is how you use actions here
  187. // if (keycode == KC_LEAD) {
  188. // action_t action;
  189. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  190. // process_action(record, action);
  191. // return false;
  192. // }
  193. #ifdef TAP_DANCE_ENABLE
  194. preprocess_tap_dance(keycode, record);
  195. #endif
  196. if (!(
  197. #if defined(KEY_LOCK_ENABLE)
  198. // Must run first to be able to mask key_up events.
  199. process_key_lock(&keycode, record) &&
  200. #endif
  201. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  202. process_clicky(keycode, record) &&
  203. #endif //AUDIO_CLICKY
  204. process_record_kb(keycode, record) &&
  205. #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
  206. process_rgb_matrix(keycode, record) &&
  207. #endif
  208. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  209. process_midi(keycode, record) &&
  210. #endif
  211. #ifdef AUDIO_ENABLE
  212. process_audio(keycode, record) &&
  213. #endif
  214. #ifdef STENO_ENABLE
  215. process_steno(keycode, record) &&
  216. #endif
  217. #if ( defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  218. process_music(keycode, record) &&
  219. #endif
  220. #ifdef TAP_DANCE_ENABLE
  221. process_tap_dance(keycode, record) &&
  222. #endif
  223. #ifdef LEADER_ENABLE
  224. process_leader(keycode, record) &&
  225. #endif
  226. #ifdef COMBO_ENABLE
  227. process_combo(keycode, record) &&
  228. #endif
  229. #ifdef UNICODE_ENABLE
  230. process_unicode(keycode, record) &&
  231. #endif
  232. #ifdef UCIS_ENABLE
  233. process_ucis(keycode, record) &&
  234. #endif
  235. #ifdef PRINTING_ENABLE
  236. process_printer(keycode, record) &&
  237. #endif
  238. #ifdef AUTO_SHIFT_ENABLE
  239. process_auto_shift(keycode, record) &&
  240. #endif
  241. #ifdef UNICODEMAP_ENABLE
  242. process_unicode_map(keycode, record) &&
  243. #endif
  244. #ifdef TERMINAL_ENABLE
  245. process_terminal(keycode, record) &&
  246. #endif
  247. true)) {
  248. return false;
  249. }
  250. // Shift / paren setup
  251. switch(keycode) {
  252. case RESET:
  253. if (record->event.pressed) {
  254. reset_keyboard();
  255. }
  256. return false;
  257. case DEBUG:
  258. if (record->event.pressed) {
  259. debug_enable = true;
  260. print("DEBUG: enabled.\n");
  261. }
  262. return false;
  263. #ifdef FAUXCLICKY_ENABLE
  264. case FC_TOG:
  265. if (record->event.pressed) {
  266. FAUXCLICKY_TOGGLE;
  267. }
  268. return false;
  269. case FC_ON:
  270. if (record->event.pressed) {
  271. FAUXCLICKY_ON;
  272. }
  273. return false;
  274. case FC_OFF:
  275. if (record->event.pressed) {
  276. FAUXCLICKY_OFF;
  277. }
  278. return false;
  279. #endif
  280. #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  281. case RGB_TOG:
  282. // Split keyboards need to trigger on key-up for edge-case issue
  283. #ifndef SPLIT_KEYBOARD
  284. if (record->event.pressed) {
  285. #else
  286. if (!record->event.pressed) {
  287. #endif
  288. rgblight_toggle();
  289. #ifdef SPLIT_KEYBOARD
  290. RGB_DIRTY = true;
  291. #endif
  292. }
  293. return false;
  294. case RGB_MODE_FORWARD:
  295. if (record->event.pressed) {
  296. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  297. if(shifted) {
  298. rgblight_step_reverse();
  299. }
  300. else {
  301. rgblight_step();
  302. }
  303. #ifdef SPLIT_KEYBOARD
  304. RGB_DIRTY = true;
  305. #endif
  306. }
  307. return false;
  308. case RGB_MODE_REVERSE:
  309. if (record->event.pressed) {
  310. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  311. if(shifted) {
  312. rgblight_step();
  313. }
  314. else {
  315. rgblight_step_reverse();
  316. }
  317. #ifdef SPLIT_KEYBOARD
  318. RGB_DIRTY = true;
  319. #endif
  320. }
  321. return false;
  322. case RGB_HUI:
  323. // Split keyboards need to trigger on key-up for edge-case issue
  324. #ifndef SPLIT_KEYBOARD
  325. if (record->event.pressed) {
  326. #else
  327. if (!record->event.pressed) {
  328. #endif
  329. rgblight_increase_hue();
  330. #ifdef SPLIT_KEYBOARD
  331. RGB_DIRTY = true;
  332. #endif
  333. }
  334. return false;
  335. case RGB_HUD:
  336. // Split keyboards need to trigger on key-up for edge-case issue
  337. #ifndef SPLIT_KEYBOARD
  338. if (record->event.pressed) {
  339. #else
  340. if (!record->event.pressed) {
  341. #endif
  342. rgblight_decrease_hue();
  343. #ifdef SPLIT_KEYBOARD
  344. RGB_DIRTY = true;
  345. #endif
  346. }
  347. return false;
  348. case RGB_SAI:
  349. // Split keyboards need to trigger on key-up for edge-case issue
  350. #ifndef SPLIT_KEYBOARD
  351. if (record->event.pressed) {
  352. #else
  353. if (!record->event.pressed) {
  354. #endif
  355. rgblight_increase_sat();
  356. #ifdef SPLIT_KEYBOARD
  357. RGB_DIRTY = true;
  358. #endif
  359. }
  360. return false;
  361. case RGB_SAD:
  362. // Split keyboards need to trigger on key-up for edge-case issue
  363. #ifndef SPLIT_KEYBOARD
  364. if (record->event.pressed) {
  365. #else
  366. if (!record->event.pressed) {
  367. #endif
  368. rgblight_decrease_sat();
  369. #ifdef SPLIT_KEYBOARD
  370. RGB_DIRTY = true;
  371. #endif
  372. }
  373. return false;
  374. case RGB_VAI:
  375. // Split keyboards need to trigger on key-up for edge-case issue
  376. #ifndef SPLIT_KEYBOARD
  377. if (record->event.pressed) {
  378. #else
  379. if (!record->event.pressed) {
  380. #endif
  381. rgblight_increase_val();
  382. #ifdef SPLIT_KEYBOARD
  383. RGB_DIRTY = true;
  384. #endif
  385. }
  386. return false;
  387. case RGB_VAD:
  388. // Split keyboards need to trigger on key-up for edge-case issue
  389. #ifndef SPLIT_KEYBOARD
  390. if (record->event.pressed) {
  391. #else
  392. if (!record->event.pressed) {
  393. #endif
  394. rgblight_decrease_val();
  395. #ifdef SPLIT_KEYBOARD
  396. RGB_DIRTY = true;
  397. #endif
  398. }
  399. return false;
  400. case RGB_SPI:
  401. if (record->event.pressed) {
  402. rgblight_increase_speed();
  403. }
  404. return false;
  405. case RGB_SPD:
  406. if (record->event.pressed) {
  407. rgblight_decrease_speed();
  408. }
  409. return false;
  410. case RGB_MODE_PLAIN:
  411. if (record->event.pressed) {
  412. rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
  413. #ifdef SPLIT_KEYBOARD
  414. RGB_DIRTY = true;
  415. #endif
  416. }
  417. return false;
  418. case RGB_MODE_BREATHE:
  419. #ifdef RGBLIGHT_EFFECT_BREATHING
  420. if (record->event.pressed) {
  421. if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
  422. (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
  423. rgblight_step();
  424. } else {
  425. rgblight_mode(RGBLIGHT_MODE_BREATHING);
  426. }
  427. }
  428. #endif
  429. return false;
  430. case RGB_MODE_RAINBOW:
  431. #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
  432. if (record->event.pressed) {
  433. if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
  434. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
  435. rgblight_step();
  436. } else {
  437. rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
  438. }
  439. }
  440. #endif
  441. return false;
  442. case RGB_MODE_SWIRL:
  443. #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
  444. if (record->event.pressed) {
  445. if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
  446. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
  447. rgblight_step();
  448. } else {
  449. rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
  450. }
  451. }
  452. #endif
  453. return false;
  454. case RGB_MODE_SNAKE:
  455. #ifdef RGBLIGHT_EFFECT_SNAKE
  456. if (record->event.pressed) {
  457. if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
  458. (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
  459. rgblight_step();
  460. } else {
  461. rgblight_mode(RGBLIGHT_MODE_SNAKE);
  462. }
  463. }
  464. #endif
  465. return false;
  466. case RGB_MODE_KNIGHT:
  467. #ifdef RGBLIGHT_EFFECT_KNIGHT
  468. if (record->event.pressed) {
  469. if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
  470. (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
  471. rgblight_step();
  472. } else {
  473. rgblight_mode(RGBLIGHT_MODE_KNIGHT);
  474. }
  475. }
  476. #endif
  477. return false;
  478. case RGB_MODE_XMAS:
  479. #ifdef RGBLIGHT_EFFECT_CHRISTMAS
  480. if (record->event.pressed) {
  481. rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
  482. }
  483. #endif
  484. return false;
  485. case RGB_MODE_GRADIENT:
  486. #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
  487. if (record->event.pressed) {
  488. if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
  489. (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
  490. rgblight_step();
  491. } else {
  492. rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
  493. }
  494. }
  495. #endif
  496. return false;
  497. case RGB_MODE_RGBTEST:
  498. #ifdef RGBLIGHT_EFFECT_RGB_TEST
  499. if (record->event.pressed) {
  500. rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
  501. }
  502. #endif
  503. return false;
  504. #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  505. #ifdef PROTOCOL_LUFA
  506. case OUT_AUTO:
  507. if (record->event.pressed) {
  508. set_output(OUTPUT_AUTO);
  509. }
  510. return false;
  511. case OUT_USB:
  512. if (record->event.pressed) {
  513. set_output(OUTPUT_USB);
  514. }
  515. return false;
  516. #ifdef BLUETOOTH_ENABLE
  517. case OUT_BT:
  518. if (record->event.pressed) {
  519. set_output(OUTPUT_BLUETOOTH);
  520. }
  521. return false;
  522. #endif
  523. #endif
  524. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  525. if (record->event.pressed) {
  526. // MAGIC actions (BOOTMAGIC without the boot)
  527. if (!eeconfig_is_enabled()) {
  528. eeconfig_init();
  529. }
  530. /* keymap config */
  531. keymap_config.raw = eeconfig_read_keymap();
  532. switch (keycode)
  533. {
  534. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  535. keymap_config.swap_control_capslock = true;
  536. break;
  537. case MAGIC_CAPSLOCK_TO_CONTROL:
  538. keymap_config.capslock_to_control = true;
  539. break;
  540. case MAGIC_SWAP_LALT_LGUI:
  541. keymap_config.swap_lalt_lgui = true;
  542. break;
  543. case MAGIC_SWAP_RALT_RGUI:
  544. keymap_config.swap_ralt_rgui = true;
  545. break;
  546. case MAGIC_NO_GUI:
  547. keymap_config.no_gui = true;
  548. break;
  549. case MAGIC_SWAP_GRAVE_ESC:
  550. keymap_config.swap_grave_esc = true;
  551. break;
  552. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  553. keymap_config.swap_backslash_backspace = true;
  554. break;
  555. case MAGIC_HOST_NKRO:
  556. keymap_config.nkro = true;
  557. break;
  558. case MAGIC_SWAP_ALT_GUI:
  559. keymap_config.swap_lalt_lgui = true;
  560. keymap_config.swap_ralt_rgui = true;
  561. #ifdef AUDIO_ENABLE
  562. PLAY_SONG(ag_swap_song);
  563. #endif
  564. break;
  565. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  566. keymap_config.swap_control_capslock = false;
  567. break;
  568. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  569. keymap_config.capslock_to_control = false;
  570. break;
  571. case MAGIC_UNSWAP_LALT_LGUI:
  572. keymap_config.swap_lalt_lgui = false;
  573. break;
  574. case MAGIC_UNSWAP_RALT_RGUI:
  575. keymap_config.swap_ralt_rgui = false;
  576. break;
  577. case MAGIC_UNNO_GUI:
  578. keymap_config.no_gui = false;
  579. break;
  580. case MAGIC_UNSWAP_GRAVE_ESC:
  581. keymap_config.swap_grave_esc = false;
  582. break;
  583. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  584. keymap_config.swap_backslash_backspace = false;
  585. break;
  586. case MAGIC_UNHOST_NKRO:
  587. keymap_config.nkro = false;
  588. break;
  589. case MAGIC_UNSWAP_ALT_GUI:
  590. keymap_config.swap_lalt_lgui = false;
  591. keymap_config.swap_ralt_rgui = false;
  592. #ifdef AUDIO_ENABLE
  593. PLAY_SONG(ag_norm_song);
  594. #endif
  595. break;
  596. case MAGIC_TOGGLE_ALT_GUI:
  597. keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
  598. keymap_config.swap_ralt_rgui = !keymap_config.swap_ralt_rgui;
  599. #ifdef AUDIO_ENABLE
  600. if (keymap_config.swap_ralt_rgui) {
  601. PLAY_SONG(ag_swap_song);
  602. } else {
  603. PLAY_SONG(ag_norm_song);
  604. }
  605. #endif
  606. break;
  607. case MAGIC_TOGGLE_NKRO:
  608. keymap_config.nkro = !keymap_config.nkro;
  609. break;
  610. default:
  611. break;
  612. }
  613. eeconfig_update_keymap(keymap_config.raw);
  614. clear_keyboard(); // clear to prevent stuck keys
  615. return false;
  616. }
  617. break;
  618. case KC_LSPO: {
  619. if (record->event.pressed) {
  620. shift_interrupted[0] = false;
  621. scs_timer[0] = timer_read ();
  622. register_mods(MOD_BIT(KC_LSFT));
  623. }
  624. else {
  625. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  626. if (get_mods() & MOD_BIT(KC_RSFT)) {
  627. shift_interrupted[0] = true;
  628. shift_interrupted[1] = true;
  629. }
  630. #endif
  631. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  632. register_code(LSPO_KEY);
  633. unregister_code(LSPO_KEY);
  634. }
  635. unregister_mods(MOD_BIT(KC_LSFT));
  636. }
  637. return false;
  638. }
  639. case KC_RSPC: {
  640. if (record->event.pressed) {
  641. shift_interrupted[1] = false;
  642. scs_timer[1] = timer_read ();
  643. register_mods(MOD_BIT(KC_RSFT));
  644. }
  645. else {
  646. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  647. if (get_mods() & MOD_BIT(KC_LSFT)) {
  648. shift_interrupted[0] = true;
  649. shift_interrupted[1] = true;
  650. }
  651. #endif
  652. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  653. register_code(RSPC_KEY);
  654. unregister_code(RSPC_KEY);
  655. }
  656. unregister_mods(MOD_BIT(KC_RSFT));
  657. }
  658. return false;
  659. }
  660. case KC_SFTENT: {
  661. if (record->event.pressed) {
  662. shift_interrupted[1] = false;
  663. scs_timer[1] = timer_read ();
  664. register_mods(MOD_BIT(KC_RSFT));
  665. }
  666. else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  667. unregister_mods(MOD_BIT(KC_RSFT));
  668. register_code(SFTENT_KEY);
  669. unregister_code(SFTENT_KEY);
  670. }
  671. else {
  672. unregister_mods(MOD_BIT(KC_RSFT));
  673. }
  674. return false;
  675. }
  676. case GRAVE_ESC: {
  677. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  678. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  679. #ifdef GRAVE_ESC_ALT_OVERRIDE
  680. // if ALT is pressed, ESC is always sent
  681. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  682. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  683. shifted = 0;
  684. }
  685. #endif
  686. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  687. // if CTRL is pressed, ESC is always sent
  688. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  689. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  690. shifted = 0;
  691. }
  692. #endif
  693. #ifdef GRAVE_ESC_GUI_OVERRIDE
  694. // if GUI is pressed, ESC is always sent
  695. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  696. shifted = 0;
  697. }
  698. #endif
  699. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  700. // if SHIFT is pressed, ESC is always sent
  701. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  702. shifted = 0;
  703. }
  704. #endif
  705. if (record->event.pressed) {
  706. grave_esc_was_shifted = shifted;
  707. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  708. }
  709. else {
  710. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  711. }
  712. send_keyboard_report();
  713. return false;
  714. }
  715. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  716. case BL_BRTG: {
  717. if (record->event.pressed)
  718. breathing_toggle();
  719. return false;
  720. }
  721. #endif
  722. default: {
  723. shift_interrupted[0] = true;
  724. shift_interrupted[1] = true;
  725. break;
  726. }
  727. }
  728. return process_action_kb(record);
  729. }
  730. __attribute__ ((weak))
  731. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  732. 0, 0, 0, 0, 0, 0, 0, 0,
  733. 0, 0, 0, 0, 0, 0, 0, 0,
  734. 0, 0, 0, 0, 0, 0, 0, 0,
  735. 0, 0, 0, 0, 0, 0, 0, 0,
  736. 0, 1, 1, 1, 1, 1, 1, 0,
  737. 1, 1, 1, 1, 0, 0, 0, 0,
  738. 0, 0, 0, 0, 0, 0, 0, 0,
  739. 0, 0, 1, 0, 1, 0, 1, 1,
  740. 1, 1, 1, 1, 1, 1, 1, 1,
  741. 1, 1, 1, 1, 1, 1, 1, 1,
  742. 1, 1, 1, 1, 1, 1, 1, 1,
  743. 1, 1, 1, 0, 0, 0, 1, 1,
  744. 0, 0, 0, 0, 0, 0, 0, 0,
  745. 0, 0, 0, 0, 0, 0, 0, 0,
  746. 0, 0, 0, 0, 0, 0, 0, 0,
  747. 0, 0, 0, 1, 1, 1, 1, 0
  748. };
  749. __attribute__ ((weak))
  750. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  751. 0, 0, 0, 0, 0, 0, 0, 0,
  752. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  753. 0, 0, 0, 0, 0, 0, 0, 0,
  754. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  755. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  756. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  757. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  758. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  759. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  760. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  761. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  762. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  763. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  764. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  765. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  766. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  767. };
  768. void send_string(const char *str) {
  769. send_string_with_delay(str, 0);
  770. }
  771. void send_string_P(const char *str) {
  772. send_string_with_delay_P(str, 0);
  773. }
  774. void send_string_with_delay(const char *str, uint8_t interval) {
  775. while (1) {
  776. char ascii_code = *str;
  777. if (!ascii_code) break;
  778. if (ascii_code == 1) {
  779. // tap
  780. uint8_t keycode = *(++str);
  781. register_code(keycode);
  782. unregister_code(keycode);
  783. } else if (ascii_code == 2) {
  784. // down
  785. uint8_t keycode = *(++str);
  786. register_code(keycode);
  787. } else if (ascii_code == 3) {
  788. // up
  789. uint8_t keycode = *(++str);
  790. unregister_code(keycode);
  791. } else {
  792. send_char(ascii_code);
  793. }
  794. ++str;
  795. // interval
  796. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  797. }
  798. }
  799. void send_string_with_delay_P(const char *str, uint8_t interval) {
  800. while (1) {
  801. char ascii_code = pgm_read_byte(str);
  802. if (!ascii_code) break;
  803. if (ascii_code == 1) {
  804. // tap
  805. uint8_t keycode = pgm_read_byte(++str);
  806. register_code(keycode);
  807. unregister_code(keycode);
  808. } else if (ascii_code == 2) {
  809. // down
  810. uint8_t keycode = pgm_read_byte(++str);
  811. register_code(keycode);
  812. } else if (ascii_code == 3) {
  813. // up
  814. uint8_t keycode = pgm_read_byte(++str);
  815. unregister_code(keycode);
  816. } else {
  817. send_char(ascii_code);
  818. }
  819. ++str;
  820. // interval
  821. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  822. }
  823. }
  824. void send_char(char ascii_code) {
  825. uint8_t keycode;
  826. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  827. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  828. register_code(KC_LSFT);
  829. register_code(keycode);
  830. unregister_code(keycode);
  831. unregister_code(KC_LSFT);
  832. } else {
  833. register_code(keycode);
  834. unregister_code(keycode);
  835. }
  836. }
  837. void set_single_persistent_default_layer(uint8_t default_layer) {
  838. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  839. PLAY_SONG(default_layer_songs[default_layer]);
  840. #endif
  841. eeconfig_update_default_layer(1U<<default_layer);
  842. default_layer_set(1U<<default_layer);
  843. }
  844. uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  845. uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  846. uint32_t mask3 = 1UL << layer3;
  847. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  848. }
  849. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  850. layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
  851. }
  852. void tap_random_base64(void) {
  853. #if defined(__AVR_ATmega32U4__)
  854. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  855. #else
  856. uint8_t key = rand() % 64;
  857. #endif
  858. switch (key) {
  859. case 0 ... 25:
  860. register_code(KC_LSFT);
  861. register_code(key + KC_A);
  862. unregister_code(key + KC_A);
  863. unregister_code(KC_LSFT);
  864. break;
  865. case 26 ... 51:
  866. register_code(key - 26 + KC_A);
  867. unregister_code(key - 26 + KC_A);
  868. break;
  869. case 52:
  870. register_code(KC_0);
  871. unregister_code(KC_0);
  872. break;
  873. case 53 ... 61:
  874. register_code(key - 53 + KC_1);
  875. unregister_code(key - 53 + KC_1);
  876. break;
  877. case 62:
  878. register_code(KC_LSFT);
  879. register_code(KC_EQL);
  880. unregister_code(KC_EQL);
  881. unregister_code(KC_LSFT);
  882. break;
  883. case 63:
  884. register_code(KC_SLSH);
  885. unregister_code(KC_SLSH);
  886. break;
  887. }
  888. }
  889. void matrix_init_quantum() {
  890. if (!eeconfig_is_enabled() && !eeconfig_is_disabled()) {
  891. eeconfig_init();
  892. }
  893. #ifdef BACKLIGHT_ENABLE
  894. backlight_init_ports();
  895. #endif
  896. #ifdef AUDIO_ENABLE
  897. audio_init();
  898. #endif
  899. #ifdef RGB_MATRIX_ENABLE
  900. rgb_matrix_init();
  901. #endif
  902. #ifdef ENCODER_ENABLE
  903. encoder_init();
  904. #endif
  905. matrix_init_kb();
  906. }
  907. uint8_t rgb_matrix_task_counter = 0;
  908. #ifndef RGB_MATRIX_SKIP_FRAMES
  909. #define RGB_MATRIX_SKIP_FRAMES 1
  910. #endif
  911. void matrix_scan_quantum() {
  912. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  913. matrix_scan_music();
  914. #endif
  915. #ifdef TAP_DANCE_ENABLE
  916. matrix_scan_tap_dance();
  917. #endif
  918. #ifdef COMBO_ENABLE
  919. matrix_scan_combo();
  920. #endif
  921. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  922. backlight_task();
  923. #endif
  924. #ifdef RGB_MATRIX_ENABLE
  925. rgb_matrix_task();
  926. if (rgb_matrix_task_counter == 0) {
  927. rgb_matrix_update_pwm_buffers();
  928. }
  929. rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
  930. #endif
  931. #ifdef ENCODER_ENABLE
  932. encoder_read();
  933. #endif
  934. matrix_scan_kb();
  935. }
  936. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  937. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  938. // depending on the pin, we use a different output compare unit
  939. #if BACKLIGHT_PIN == B7
  940. # define TCCRxA TCCR1A
  941. # define TCCRxB TCCR1B
  942. # define COMxx1 COM1C1
  943. # define OCRxx OCR1C
  944. # define ICRx ICR1
  945. #elif BACKLIGHT_PIN == B6
  946. # define TCCRxA TCCR1A
  947. # define TCCRxB TCCR1B
  948. # define COMxx1 COM1B1
  949. # define OCRxx OCR1B
  950. # define ICRx ICR1
  951. #elif BACKLIGHT_PIN == B5
  952. # define TCCRxA TCCR1A
  953. # define TCCRxB TCCR1B
  954. # define COMxx1 COM1A1
  955. # define OCRxx OCR1A
  956. # define ICRx ICR1
  957. #elif BACKLIGHT_PIN == C6
  958. # define TCCRxA TCCR3A
  959. # define TCCRxB TCCR3B
  960. # define COMxx1 COM1A1
  961. # define OCRxx OCR3A
  962. # define ICRx ICR3
  963. #else
  964. # define NO_HARDWARE_PWM
  965. #endif
  966. #ifndef BACKLIGHT_ON_STATE
  967. #define BACKLIGHT_ON_STATE 0
  968. #endif
  969. #ifdef NO_HARDWARE_PWM // pwm through software
  970. __attribute__ ((weak))
  971. void backlight_init_ports(void)
  972. {
  973. // Setup backlight pin as output and output to on state.
  974. // DDRx |= n
  975. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  976. #if BACKLIGHT_ON_STATE == 0
  977. // PORTx &= ~n
  978. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  979. #else
  980. // PORTx |= n
  981. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  982. #endif
  983. }
  984. __attribute__ ((weak))
  985. void backlight_set(uint8_t level) {}
  986. uint8_t backlight_tick = 0;
  987. #ifndef BACKLIGHT_CUSTOM_DRIVER
  988. void backlight_task(void) {
  989. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  990. #if BACKLIGHT_ON_STATE == 0
  991. // PORTx &= ~n
  992. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  993. #else
  994. // PORTx |= n
  995. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  996. #endif
  997. } else {
  998. #if BACKLIGHT_ON_STATE == 0
  999. // PORTx |= n
  1000. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1001. #else
  1002. // PORTx &= ~n
  1003. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1004. #endif
  1005. }
  1006. backlight_tick = (backlight_tick + 1) % 16;
  1007. }
  1008. #endif
  1009. #ifdef BACKLIGHT_BREATHING
  1010. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1011. #error "Backlight breathing only available with hardware PWM. Please disable."
  1012. #endif
  1013. #endif
  1014. #else // pwm through timer
  1015. #define TIMER_TOP 0xFFFFU
  1016. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  1017. static uint16_t cie_lightness(uint16_t v) {
  1018. if (v <= 5243) // if below 8% of max
  1019. return v / 9; // same as dividing by 900%
  1020. else {
  1021. uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  1022. // to get a useful result with integer division, we shift left in the expression above
  1023. // and revert what we've done again after squaring.
  1024. y = y * y * y >> 8;
  1025. if (y > 0xFFFFUL) // prevent overflow
  1026. return 0xFFFFU;
  1027. else
  1028. return (uint16_t) y;
  1029. }
  1030. }
  1031. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  1032. static inline void set_pwm(uint16_t val) {
  1033. OCRxx = val;
  1034. }
  1035. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1036. __attribute__ ((weak))
  1037. void backlight_set(uint8_t level) {
  1038. if (level > BACKLIGHT_LEVELS)
  1039. level = BACKLIGHT_LEVELS;
  1040. if (level == 0) {
  1041. // Turn off PWM control on backlight pin
  1042. TCCRxA &= ~(_BV(COMxx1));
  1043. } else {
  1044. // Turn on PWM control of backlight pin
  1045. TCCRxA |= _BV(COMxx1);
  1046. }
  1047. // Set the brightness
  1048. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  1049. }
  1050. void backlight_task(void) {}
  1051. #endif // BACKLIGHT_CUSTOM_DRIVER
  1052. #ifdef BACKLIGHT_BREATHING
  1053. #define BREATHING_NO_HALT 0
  1054. #define BREATHING_HALT_OFF 1
  1055. #define BREATHING_HALT_ON 2
  1056. #define BREATHING_STEPS 128
  1057. static uint8_t breathing_period = BREATHING_PERIOD;
  1058. static uint8_t breathing_halt = BREATHING_NO_HALT;
  1059. static uint16_t breathing_counter = 0;
  1060. bool is_breathing(void) {
  1061. return !!(TIMSK1 & _BV(TOIE1));
  1062. }
  1063. #define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
  1064. #define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
  1065. #define breathing_min() do {breathing_counter = 0;} while (0)
  1066. #define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
  1067. void breathing_enable(void)
  1068. {
  1069. breathing_counter = 0;
  1070. breathing_halt = BREATHING_NO_HALT;
  1071. breathing_interrupt_enable();
  1072. }
  1073. void breathing_pulse(void)
  1074. {
  1075. if (get_backlight_level() == 0)
  1076. breathing_min();
  1077. else
  1078. breathing_max();
  1079. breathing_halt = BREATHING_HALT_ON;
  1080. breathing_interrupt_enable();
  1081. }
  1082. void breathing_disable(void)
  1083. {
  1084. breathing_interrupt_disable();
  1085. // Restore backlight level
  1086. backlight_set(get_backlight_level());
  1087. }
  1088. void breathing_self_disable(void)
  1089. {
  1090. if (get_backlight_level() == 0)
  1091. breathing_halt = BREATHING_HALT_OFF;
  1092. else
  1093. breathing_halt = BREATHING_HALT_ON;
  1094. }
  1095. void breathing_toggle(void) {
  1096. if (is_breathing())
  1097. breathing_disable();
  1098. else
  1099. breathing_enable();
  1100. }
  1101. void breathing_period_set(uint8_t value)
  1102. {
  1103. if (!value)
  1104. value = 1;
  1105. breathing_period = value;
  1106. }
  1107. void breathing_period_default(void) {
  1108. breathing_period_set(BREATHING_PERIOD);
  1109. }
  1110. void breathing_period_inc(void)
  1111. {
  1112. breathing_period_set(breathing_period+1);
  1113. }
  1114. void breathing_period_dec(void)
  1115. {
  1116. breathing_period_set(breathing_period-1);
  1117. }
  1118. /* To generate breathing curve in python:
  1119. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  1120. */
  1121. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1122. // Use this before the cie_lightness function.
  1123. static inline uint16_t scale_backlight(uint16_t v) {
  1124. return v / BACKLIGHT_LEVELS * get_backlight_level();
  1125. }
  1126. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  1127. * about 244 times per second.
  1128. */
  1129. ISR(TIMER1_OVF_vect)
  1130. {
  1131. uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  1132. // resetting after one period to prevent ugly reset at overflow.
  1133. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  1134. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  1135. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
  1136. ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  1137. {
  1138. breathing_interrupt_disable();
  1139. }
  1140. set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  1141. }
  1142. #endif // BACKLIGHT_BREATHING
  1143. __attribute__ ((weak))
  1144. void backlight_init_ports(void)
  1145. {
  1146. // Setup backlight pin as output and output to on state.
  1147. // DDRx |= n
  1148. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  1149. #if BACKLIGHT_ON_STATE == 0
  1150. // PORTx &= ~n
  1151. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1152. #else
  1153. // PORTx |= n
  1154. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1155. #endif
  1156. // I could write a wall of text here to explain... but TL;DW
  1157. // Go read the ATmega32u4 datasheet.
  1158. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1159. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1160. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1161. // (i.e. start high, go low when counter matches.)
  1162. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1163. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1164. /*
  1165. 14.8.3:
  1166. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1167. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1168. */
  1169. TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
  1170. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1171. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1172. ICRx = TIMER_TOP;
  1173. backlight_init();
  1174. #ifdef BACKLIGHT_BREATHING
  1175. breathing_enable();
  1176. #endif
  1177. }
  1178. #endif // NO_HARDWARE_PWM
  1179. #else // backlight
  1180. __attribute__ ((weak))
  1181. void backlight_init_ports(void) {}
  1182. __attribute__ ((weak))
  1183. void backlight_set(uint8_t level) {}
  1184. #endif // backlight
  1185. #ifdef HD44780_ENABLED
  1186. #include "hd44780.h"
  1187. #endif
  1188. // Functions for spitting out values
  1189. //
  1190. void send_dword(uint32_t number) { // this might not actually work
  1191. uint16_t word = (number >> 16);
  1192. send_word(word);
  1193. send_word(number & 0xFFFFUL);
  1194. }
  1195. void send_word(uint16_t number) {
  1196. uint8_t byte = number >> 8;
  1197. send_byte(byte);
  1198. send_byte(number & 0xFF);
  1199. }
  1200. void send_byte(uint8_t number) {
  1201. uint8_t nibble = number >> 4;
  1202. send_nibble(nibble);
  1203. send_nibble(number & 0xF);
  1204. }
  1205. void send_nibble(uint8_t number) {
  1206. switch (number) {
  1207. case 0:
  1208. register_code(KC_0);
  1209. unregister_code(KC_0);
  1210. break;
  1211. case 1 ... 9:
  1212. register_code(KC_1 + (number - 1));
  1213. unregister_code(KC_1 + (number - 1));
  1214. break;
  1215. case 0xA ... 0xF:
  1216. register_code(KC_A + (number - 0xA));
  1217. unregister_code(KC_A + (number - 0xA));
  1218. break;
  1219. }
  1220. }
  1221. __attribute__((weak))
  1222. uint16_t hex_to_keycode(uint8_t hex)
  1223. {
  1224. hex = hex & 0xF;
  1225. if (hex == 0x0) {
  1226. return KC_0;
  1227. } else if (hex < 0xA) {
  1228. return KC_1 + (hex - 0x1);
  1229. } else {
  1230. return KC_A + (hex - 0xA);
  1231. }
  1232. }
  1233. void api_send_unicode(uint32_t unicode) {
  1234. #ifdef API_ENABLE
  1235. uint8_t chunk[4];
  1236. dword_to_bytes(unicode, chunk);
  1237. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1238. #endif
  1239. }
  1240. __attribute__ ((weak))
  1241. void led_set_user(uint8_t usb_led) {
  1242. }
  1243. __attribute__ ((weak))
  1244. void led_set_kb(uint8_t usb_led) {
  1245. led_set_user(usb_led);
  1246. }
  1247. __attribute__ ((weak))
  1248. void led_init_ports(void)
  1249. {
  1250. }
  1251. __attribute__ ((weak))
  1252. void led_set(uint8_t usb_led)
  1253. {
  1254. // Example LED Code
  1255. //
  1256. // // Using PE6 Caps Lock LED
  1257. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1258. // {
  1259. // // Output high.
  1260. // DDRE |= (1<<6);
  1261. // PORTE |= (1<<6);
  1262. // }
  1263. // else
  1264. // {
  1265. // // Output low.
  1266. // DDRE &= ~(1<<6);
  1267. // PORTE &= ~(1<<6);
  1268. // }
  1269. led_set_kb(usb_led);
  1270. }
  1271. //------------------------------------------------------------------------------
  1272. // Override these functions in your keymap file to play different tunes on
  1273. // different events such as startup and bootloader jump
  1274. __attribute__ ((weak))
  1275. void startup_user() {}
  1276. __attribute__ ((weak))
  1277. void shutdown_user() {}
  1278. //------------------------------------------------------------------------------