matrix.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <string.h>
  20. #include <avr/io.h>
  21. #include <avr/wdt.h>
  22. #include <avr/interrupt.h>
  23. #include <util/delay.h>
  24. #include "print.h"
  25. #include "debug.h"
  26. #include "util.h"
  27. #include "matrix.h"
  28. #include "split_util.h"
  29. #include "pro_micro.h"
  30. #ifdef USE_MATRIX_I2C
  31. # include "i2c.h"
  32. #else // USE_SERIAL
  33. # include "split_scomm.h"
  34. #endif
  35. #ifndef DEBOUNCE
  36. # define DEBOUNCE 5
  37. #endif
  38. #define ERROR_DISCONNECT_COUNT 5
  39. static uint8_t debouncing = DEBOUNCE;
  40. static const int ROWS_PER_HAND = MATRIX_ROWS/2;
  41. static uint8_t error_count = 0;
  42. uint8_t is_master = 0 ;
  43. static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  44. static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  45. /* matrix state(1:on, 0:off) */
  46. static matrix_row_t matrix[MATRIX_ROWS];
  47. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  48. static matrix_row_t read_cols(void);
  49. static void init_cols(void);
  50. static void unselect_rows(void);
  51. static void select_row(uint8_t row);
  52. static uint8_t matrix_master_scan(void);
  53. __attribute__ ((weak))
  54. void matrix_init_kb(void) {
  55. matrix_init_user();
  56. }
  57. __attribute__ ((weak))
  58. void matrix_scan_kb(void) {
  59. matrix_scan_user();
  60. }
  61. __attribute__ ((weak))
  62. void matrix_init_user(void) {
  63. }
  64. __attribute__ ((weak))
  65. void matrix_scan_user(void) {
  66. }
  67. inline
  68. uint8_t matrix_rows(void)
  69. {
  70. return MATRIX_ROWS;
  71. }
  72. inline
  73. uint8_t matrix_cols(void)
  74. {
  75. return MATRIX_COLS;
  76. }
  77. void tx_rx_leds_init(void)
  78. {
  79. #ifndef NO_DEBUG_LEDS
  80. TX_RX_LED_INIT;
  81. TXLED0;
  82. RXLED0;
  83. #endif
  84. }
  85. void tx_led_on(void)
  86. {
  87. #ifndef NO_DEBUG_LEDS
  88. TXLED1;
  89. #endif
  90. }
  91. void tx_led_off(void)
  92. {
  93. #ifndef NO_DEBUG_LEDS
  94. TXLED0;
  95. #endif
  96. }
  97. void rx_led_on(void)
  98. {
  99. #ifndef NO_DEBUG_LEDS
  100. RXLED1;
  101. #endif
  102. }
  103. void rx_led_off(void)
  104. {
  105. #ifndef NO_DEBUG_LEDS
  106. RXLED0;
  107. #endif
  108. }
  109. void matrix_init(void)
  110. {
  111. split_keyboard_setup();
  112. // initialize row and col
  113. unselect_rows();
  114. init_cols();
  115. tx_rx_leds_init();
  116. // initialize matrix state: all keys off
  117. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  118. matrix[i] = 0;
  119. matrix_debouncing[i] = 0;
  120. }
  121. is_master = has_usb();
  122. matrix_init_quantum();
  123. }
  124. uint8_t _matrix_scan(void)
  125. {
  126. // Right hand is stored after the left in the matirx so, we need to offset it
  127. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  128. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  129. select_row(i);
  130. _delay_us(30); // without this wait read unstable value.
  131. matrix_row_t cols = read_cols();
  132. if (matrix_debouncing[i+offset] != cols) {
  133. matrix_debouncing[i+offset] = cols;
  134. debouncing = DEBOUNCE;
  135. }
  136. unselect_rows();
  137. }
  138. if (debouncing) {
  139. if (--debouncing) {
  140. _delay_ms(1);
  141. } else {
  142. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  143. matrix[i+offset] = matrix_debouncing[i+offset];
  144. }
  145. }
  146. }
  147. return 1;
  148. }
  149. #ifdef USE_MATRIX_I2C
  150. // Get rows from other half over i2c
  151. int i2c_transaction(void) {
  152. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  153. int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  154. if (err) goto i2c_error;
  155. // start of matrix stored at 0x00
  156. err = i2c_master_write(0x00);
  157. if (err) goto i2c_error;
  158. // Start read
  159. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  160. if (err) goto i2c_error;
  161. if (!err) {
  162. int i;
  163. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  164. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  165. }
  166. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  167. i2c_master_stop();
  168. } else {
  169. i2c_error: // the cable is disconnceted, or something else went wrong
  170. i2c_reset_state();
  171. return err;
  172. }
  173. return 0;
  174. }
  175. #else // USE_SERIAL
  176. int serial_transaction(int master_changed) {
  177. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  178. #ifdef SERIAL_USE_MULTI_TRANSACTION
  179. int ret=serial_update_buffers(master_changed);
  180. #else
  181. int ret=serial_update_buffers();
  182. #endif
  183. if (ret ) {
  184. if(ret==2) rx_led_on();
  185. return 1;
  186. }
  187. rx_led_off();
  188. memcpy(&matrix[slaveOffset],
  189. (void *)serial_slave_buffer, SERIAL_SLAVE_BUFFER_LENGTH);
  190. return 0;
  191. }
  192. #endif
  193. uint8_t matrix_scan(void)
  194. {
  195. if (is_master) {
  196. matrix_master_scan();
  197. }else{
  198. matrix_slave_scan();
  199. int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
  200. memcpy(&matrix[offset],
  201. (void *)serial_master_buffer, SERIAL_MASTER_BUFFER_LENGTH);
  202. matrix_scan_quantum();
  203. }
  204. return 1;
  205. }
  206. uint8_t matrix_master_scan(void) {
  207. int ret = _matrix_scan();
  208. int mchanged = 1;
  209. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  210. #ifdef USE_MATRIX_I2C
  211. // for (int i = 0; i < ROWS_PER_HAND; ++i) {
  212. /* i2c_slave_buffer[i] = matrix[offset+i]; */
  213. // i2c_slave_buffer[i] = matrix[offset+i];
  214. // }
  215. #else // USE_SERIAL
  216. #ifdef SERIAL_USE_MULTI_TRANSACTION
  217. mchanged = memcmp((void *)serial_master_buffer,
  218. &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
  219. #endif
  220. memcpy((void *)serial_master_buffer,
  221. &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
  222. #endif
  223. #ifdef USE_MATRIX_I2C
  224. if( i2c_transaction() ) {
  225. #else // USE_SERIAL
  226. if( serial_transaction(mchanged) ) {
  227. #endif
  228. // turn on the indicator led when halves are disconnected
  229. tx_led_on();
  230. error_count++;
  231. if (error_count > ERROR_DISCONNECT_COUNT) {
  232. // reset other half if disconnected
  233. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  234. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  235. matrix[slaveOffset+i] = 0;
  236. }
  237. }
  238. } else {
  239. // turn off the indicator led on no error
  240. tx_led_off();
  241. error_count = 0;
  242. }
  243. matrix_scan_quantum();
  244. return ret;
  245. }
  246. void matrix_slave_scan(void) {
  247. _matrix_scan();
  248. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  249. #ifdef USE_MATRIX_I2C
  250. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  251. /* i2c_slave_buffer[i] = matrix[offset+i]; */
  252. i2c_slave_buffer[i] = matrix[offset+i];
  253. }
  254. #else // USE_SERIAL
  255. #ifdef SERIAL_USE_MULTI_TRANSACTION
  256. int change = 0;
  257. #endif
  258. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  259. #ifdef SERIAL_USE_MULTI_TRANSACTION
  260. if( serial_slave_buffer[i] != matrix[offset+i] )
  261. change = 1;
  262. #endif
  263. serial_slave_buffer[i] = matrix[offset+i];
  264. }
  265. #ifdef SERIAL_USE_MULTI_TRANSACTION
  266. slave_buffer_change_count += change;
  267. #endif
  268. #endif
  269. }
  270. bool matrix_is_modified(void)
  271. {
  272. if (debouncing) return false;
  273. return true;
  274. }
  275. inline
  276. bool matrix_is_on(uint8_t row, uint8_t col)
  277. {
  278. return (matrix[row] & ((matrix_row_t)1<<col));
  279. }
  280. inline
  281. matrix_row_t matrix_get_row(uint8_t row)
  282. {
  283. return matrix[row];
  284. }
  285. void matrix_print(void)
  286. {
  287. print("\nr/c 0123456789ABCDEF\n");
  288. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  289. phex(row); print(": ");
  290. pbin_reverse16(matrix_get_row(row));
  291. print("\n");
  292. }
  293. }
  294. uint8_t matrix_key_count(void)
  295. {
  296. uint8_t count = 0;
  297. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  298. count += bitpop16(matrix[i]);
  299. }
  300. return count;
  301. }
  302. static void init_cols(void)
  303. {
  304. for(int x = 0; x < MATRIX_COLS; x++) {
  305. _SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
  306. _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
  307. }
  308. }
  309. static matrix_row_t read_cols(void)
  310. {
  311. matrix_row_t result = 0;
  312. for(int x = 0; x < MATRIX_COLS; x++) {
  313. result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
  314. }
  315. return result;
  316. }
  317. static void unselect_rows(void)
  318. {
  319. for(int x = 0; x < ROWS_PER_HAND; x++) {
  320. _SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
  321. _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
  322. }
  323. }
  324. static void select_row(uint8_t row)
  325. {
  326. _SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
  327. _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
  328. }