quantum.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. #include "quantum.h"
  2. #ifndef TAPPING_TERM
  3. #define TAPPING_TERM 200
  4. #endif
  5. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  6. switch (code) {
  7. case QK_MODS ... QK_MODS_MAX:
  8. break;
  9. default:
  10. return;
  11. }
  12. if (code & QK_LCTL)
  13. f(KC_LCTL);
  14. if (code & QK_LSFT)
  15. f(KC_LSFT);
  16. if (code & QK_LALT)
  17. f(KC_LALT);
  18. if (code & QK_LGUI)
  19. f(KC_LGUI);
  20. if (code < QK_RMODS_MIN) return;
  21. if (code & QK_RCTL)
  22. f(KC_RCTL);
  23. if (code & QK_RSFT)
  24. f(KC_RSFT);
  25. if (code & QK_RALT)
  26. f(KC_RALT);
  27. if (code & QK_RGUI)
  28. f(KC_RGUI);
  29. }
  30. static inline void qk_register_mods(uint8_t kc) {
  31. register_mods(MOD_BIT(kc));
  32. }
  33. static inline void qk_unregister_mods(uint8_t kc) {
  34. unregister_mods(MOD_BIT(kc));
  35. }
  36. void register_code16 (uint16_t code) {
  37. do_code16 (code, qk_register_mods);
  38. register_code (code);
  39. }
  40. void unregister_code16 (uint16_t code) {
  41. unregister_code (code);
  42. do_code16 (code, qk_unregister_mods);
  43. }
  44. __attribute__ ((weak))
  45. bool process_action_kb(keyrecord_t *record) {
  46. return true;
  47. }
  48. __attribute__ ((weak))
  49. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  50. return process_record_user(keycode, record);
  51. }
  52. __attribute__ ((weak))
  53. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  54. return true;
  55. }
  56. void reset_keyboard(void) {
  57. clear_keyboard();
  58. #ifdef AUDIO_ENABLE
  59. stop_all_notes();
  60. shutdown_user();
  61. #endif
  62. wait_ms(250);
  63. #ifdef CATERINA_BOOTLOADER
  64. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  65. #endif
  66. bootloader_jump();
  67. }
  68. // Shift / paren setup
  69. #ifndef LSPO_KEY
  70. #define LSPO_KEY KC_9
  71. #endif
  72. #ifndef RSPC_KEY
  73. #define RSPC_KEY KC_0
  74. #endif
  75. static bool shift_interrupted[2] = {0, 0};
  76. static uint16_t scs_timer = 0;
  77. bool process_record_quantum(keyrecord_t *record) {
  78. /* This gets the keycode from the key pressed */
  79. keypos_t key = record->event.key;
  80. uint16_t keycode;
  81. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  82. /* TODO: Use store_or_get_action() or a similar function. */
  83. if (!disable_action_cache) {
  84. uint8_t layer;
  85. if (record->event.pressed) {
  86. layer = layer_switch_get_layer(key);
  87. update_source_layers_cache(key, layer);
  88. } else {
  89. layer = read_source_layers_cache(key);
  90. }
  91. keycode = keymap_key_to_keycode(layer, key);
  92. } else
  93. #endif
  94. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  95. // This is how you use actions here
  96. // if (keycode == KC_LEAD) {
  97. // action_t action;
  98. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  99. // process_action(record, action);
  100. // return false;
  101. // }
  102. if (!(
  103. process_record_kb(keycode, record) &&
  104. #ifdef MIDI_ENABLE
  105. process_midi(keycode, record) &&
  106. #endif
  107. #ifdef AUDIO_ENABLE
  108. process_music(keycode, record) &&
  109. #endif
  110. #ifdef TAP_DANCE_ENABLE
  111. process_tap_dance(keycode, record) &&
  112. #endif
  113. #ifndef DISABLE_LEADER
  114. process_leader(keycode, record) &&
  115. #endif
  116. #ifndef DISABLE_CHORDING
  117. process_chording(keycode, record) &&
  118. #endif
  119. #ifdef UNICODE_ENABLE
  120. process_unicode(keycode, record) &&
  121. #endif
  122. #ifdef UCIS_ENABLE
  123. process_ucis(keycode, record) &&
  124. #endif
  125. #ifdef PRINTING_ENABLE
  126. process_printer(keycode, record) &&
  127. #endif
  128. #ifdef UNICODEMAP_ENABLE
  129. process_unicode_map(keycode, record) &&
  130. #endif
  131. true)) {
  132. return false;
  133. }
  134. // Shift / paren setup
  135. switch(keycode) {
  136. case RESET:
  137. if (record->event.pressed) {
  138. reset_keyboard();
  139. }
  140. return false;
  141. break;
  142. case DEBUG:
  143. if (record->event.pressed) {
  144. print("\nDEBUG: enabled.\n");
  145. debug_enable = true;
  146. }
  147. return false;
  148. break;
  149. #ifdef RGBLIGHT_ENABLE
  150. case RGB_TOG:
  151. if (record->event.pressed) {
  152. rgblight_toggle();
  153. }
  154. return false;
  155. break;
  156. case RGB_MOD:
  157. if (record->event.pressed) {
  158. rgblight_step();
  159. }
  160. return false;
  161. break;
  162. case RGB_HUI:
  163. if (record->event.pressed) {
  164. rgblight_increase_hue();
  165. }
  166. return false;
  167. break;
  168. case RGB_HUD:
  169. if (record->event.pressed) {
  170. rgblight_decrease_hue();
  171. }
  172. return false;
  173. break;
  174. case RGB_SAI:
  175. if (record->event.pressed) {
  176. rgblight_increase_sat();
  177. }
  178. return false;
  179. break;
  180. case RGB_SAD:
  181. if (record->event.pressed) {
  182. rgblight_decrease_sat();
  183. }
  184. return false;
  185. break;
  186. case RGB_VAI:
  187. if (record->event.pressed) {
  188. rgblight_increase_val();
  189. }
  190. return false;
  191. break;
  192. case RGB_VAD:
  193. if (record->event.pressed) {
  194. rgblight_decrease_val();
  195. }
  196. return false;
  197. break;
  198. #endif
  199. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  200. if (record->event.pressed) {
  201. // MAGIC actions (BOOTMAGIC without the boot)
  202. if (!eeconfig_is_enabled()) {
  203. eeconfig_init();
  204. }
  205. /* keymap config */
  206. keymap_config.raw = eeconfig_read_keymap();
  207. switch (keycode)
  208. {
  209. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  210. keymap_config.swap_control_capslock = true;
  211. break;
  212. case MAGIC_CAPSLOCK_TO_CONTROL:
  213. keymap_config.capslock_to_control = true;
  214. break;
  215. case MAGIC_SWAP_LALT_LGUI:
  216. keymap_config.swap_lalt_lgui = true;
  217. break;
  218. case MAGIC_SWAP_RALT_RGUI:
  219. keymap_config.swap_ralt_rgui = true;
  220. break;
  221. case MAGIC_NO_GUI:
  222. keymap_config.no_gui = true;
  223. break;
  224. case MAGIC_SWAP_GRAVE_ESC:
  225. keymap_config.swap_grave_esc = true;
  226. break;
  227. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  228. keymap_config.swap_backslash_backspace = true;
  229. break;
  230. case MAGIC_HOST_NKRO:
  231. keymap_config.nkro = true;
  232. break;
  233. case MAGIC_SWAP_ALT_GUI:
  234. keymap_config.swap_lalt_lgui = true;
  235. keymap_config.swap_ralt_rgui = true;
  236. break;
  237. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  238. keymap_config.swap_control_capslock = false;
  239. break;
  240. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  241. keymap_config.capslock_to_control = false;
  242. break;
  243. case MAGIC_UNSWAP_LALT_LGUI:
  244. keymap_config.swap_lalt_lgui = false;
  245. break;
  246. case MAGIC_UNSWAP_RALT_RGUI:
  247. keymap_config.swap_ralt_rgui = false;
  248. break;
  249. case MAGIC_UNNO_GUI:
  250. keymap_config.no_gui = false;
  251. break;
  252. case MAGIC_UNSWAP_GRAVE_ESC:
  253. keymap_config.swap_grave_esc = false;
  254. break;
  255. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  256. keymap_config.swap_backslash_backspace = false;
  257. break;
  258. case MAGIC_UNHOST_NKRO:
  259. keymap_config.nkro = false;
  260. break;
  261. case MAGIC_UNSWAP_ALT_GUI:
  262. keymap_config.swap_lalt_lgui = false;
  263. keymap_config.swap_ralt_rgui = false;
  264. break;
  265. case MAGIC_TOGGLE_NKRO:
  266. keymap_config.nkro = !keymap_config.nkro;
  267. break;
  268. default:
  269. break;
  270. }
  271. eeconfig_update_keymap(keymap_config.raw);
  272. clear_keyboard(); // clear to prevent stuck keys
  273. return false;
  274. }
  275. break;
  276. case KC_LSPO: {
  277. if (record->event.pressed) {
  278. shift_interrupted[0] = false;
  279. scs_timer = timer_read ();
  280. register_mods(MOD_BIT(KC_LSFT));
  281. }
  282. else {
  283. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  284. if (get_mods() & MOD_BIT(KC_RSFT)) {
  285. shift_interrupted[0] = true;
  286. shift_interrupted[1] = true;
  287. }
  288. #endif
  289. if (!shift_interrupted[0] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  290. register_code(LSPO_KEY);
  291. unregister_code(LSPO_KEY);
  292. }
  293. unregister_mods(MOD_BIT(KC_LSFT));
  294. }
  295. return false;
  296. // break;
  297. }
  298. case KC_RSPC: {
  299. if (record->event.pressed) {
  300. shift_interrupted[1] = false;
  301. scs_timer = timer_read ();
  302. register_mods(MOD_BIT(KC_RSFT));
  303. }
  304. else {
  305. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  306. if (get_mods() & MOD_BIT(KC_LSFT)) {
  307. shift_interrupted[0] = true;
  308. shift_interrupted[1] = true;
  309. }
  310. #endif
  311. if (!shift_interrupted[1] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  312. register_code(RSPC_KEY);
  313. unregister_code(RSPC_KEY);
  314. }
  315. unregister_mods(MOD_BIT(KC_RSFT));
  316. }
  317. return false;
  318. // break;
  319. }
  320. default: {
  321. shift_interrupted[0] = true;
  322. shift_interrupted[1] = true;
  323. break;
  324. }
  325. }
  326. return process_action_kb(record);
  327. }
  328. const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
  329. 0, 0, 0, 0, 0, 0, 0, 0,
  330. 0, 0, 0, 0, 0, 0, 0, 0,
  331. 0, 0, 0, 0, 0, 0, 0, 0,
  332. 0, 0, 0, 0, 0, 0, 0, 0,
  333. 0, 1, 1, 1, 1, 1, 1, 0,
  334. 1, 1, 1, 1, 0, 0, 0, 0,
  335. 0, 0, 0, 0, 0, 0, 0, 0,
  336. 0, 0, 1, 0, 1, 0, 1, 1,
  337. 1, 1, 1, 1, 1, 1, 1, 1,
  338. 1, 1, 1, 1, 1, 1, 1, 1,
  339. 1, 1, 1, 1, 1, 1, 1, 1,
  340. 1, 1, 1, 0, 0, 0, 1, 1,
  341. 0, 0, 0, 0, 0, 0, 0, 0,
  342. 0, 0, 0, 0, 0, 0, 0, 0,
  343. 0, 0, 0, 0, 0, 0, 0, 0,
  344. 0, 0, 0, 1, 1, 1, 1, 0
  345. };
  346. const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
  347. 0, 0, 0, 0, 0, 0, 0, 0,
  348. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  349. 0, 0, 0, 0, 0, 0, 0, 0,
  350. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  351. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  352. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  353. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  354. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  355. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  356. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  357. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  358. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  359. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  360. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  361. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  362. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  363. };
  364. /* for users whose OSes are set to Colemak */
  365. #if 0
  366. #include "keymap_colemak.h"
  367. const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
  368. 0, 0, 0, 0, 0, 0, 0, 0,
  369. 0, 0, 0, 0, 0, 0, 0, 0,
  370. 0, 0, 0, 0, 0, 0, 0, 0,
  371. 0, 0, 0, 0, 0, 0, 0, 0,
  372. 0, 1, 1, 1, 1, 1, 1, 0,
  373. 1, 1, 1, 1, 0, 0, 0, 0,
  374. 0, 0, 0, 0, 0, 0, 0, 0,
  375. 0, 0, 1, 0, 1, 0, 1, 1,
  376. 1, 1, 1, 1, 1, 1, 1, 1,
  377. 1, 1, 1, 1, 1, 1, 1, 1,
  378. 1, 1, 1, 1, 1, 1, 1, 1,
  379. 1, 1, 1, 0, 0, 0, 1, 1,
  380. 0, 0, 0, 0, 0, 0, 0, 0,
  381. 0, 0, 0, 0, 0, 0, 0, 0,
  382. 0, 0, 0, 0, 0, 0, 0, 0,
  383. 0, 0, 0, 1, 1, 1, 1, 0
  384. };
  385. const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
  386. 0, 0, 0, 0, 0, 0, 0, 0,
  387. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  388. 0, 0, 0, 0, 0, 0, 0, 0,
  389. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  390. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  391. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  392. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  393. KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  394. KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  395. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  396. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  397. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  398. KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  399. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  400. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  401. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  402. };
  403. #endif
  404. void send_string(const char *str) {
  405. while (1) {
  406. uint8_t keycode;
  407. uint8_t ascii_code = pgm_read_byte(str);
  408. if (!ascii_code) break;
  409. keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
  410. if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
  411. register_code(KC_LSFT);
  412. register_code(keycode);
  413. unregister_code(keycode);
  414. unregister_code(KC_LSFT);
  415. }
  416. else {
  417. register_code(keycode);
  418. unregister_code(keycode);
  419. }
  420. ++str;
  421. }
  422. }
  423. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  424. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  425. layer_on(layer3);
  426. } else {
  427. layer_off(layer3);
  428. }
  429. }
  430. void tap_random_base64(void) {
  431. #if defined(__AVR_ATmega32U4__)
  432. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  433. #else
  434. uint8_t key = rand() % 64;
  435. #endif
  436. switch (key) {
  437. case 0 ... 25:
  438. register_code(KC_LSFT);
  439. register_code(key + KC_A);
  440. unregister_code(key + KC_A);
  441. unregister_code(KC_LSFT);
  442. break;
  443. case 26 ... 51:
  444. register_code(key - 26 + KC_A);
  445. unregister_code(key - 26 + KC_A);
  446. break;
  447. case 52:
  448. register_code(KC_0);
  449. unregister_code(KC_0);
  450. break;
  451. case 53 ... 61:
  452. register_code(key - 53 + KC_1);
  453. unregister_code(key - 53 + KC_1);
  454. break;
  455. case 62:
  456. register_code(KC_LSFT);
  457. register_code(KC_EQL);
  458. unregister_code(KC_EQL);
  459. unregister_code(KC_LSFT);
  460. break;
  461. case 63:
  462. register_code(KC_SLSH);
  463. unregister_code(KC_SLSH);
  464. break;
  465. }
  466. }
  467. void matrix_init_quantum() {
  468. #ifdef BACKLIGHT_ENABLE
  469. backlight_init_ports();
  470. #endif
  471. matrix_init_kb();
  472. }
  473. void matrix_scan_quantum() {
  474. #ifdef AUDIO_ENABLE
  475. matrix_scan_music();
  476. #endif
  477. #ifdef TAP_DANCE_ENABLE
  478. matrix_scan_tap_dance();
  479. #endif
  480. matrix_scan_kb();
  481. }
  482. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  483. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  484. #if BACKLIGHT_PIN == B7
  485. # define COM1x1 COM1C1
  486. # define OCR1x OCR1C
  487. #elif BACKLIGHT_PIN == B6
  488. # define COM1x1 COM1B1
  489. # define OCR1x OCR1B
  490. #elif BACKLIGHT_PIN == B5
  491. # define COM1x1 COM1A1
  492. # define OCR1x OCR1A
  493. #else
  494. # error "Backlight pin not supported - use B5, B6, or B7"
  495. #endif
  496. __attribute__ ((weak))
  497. void backlight_init_ports(void)
  498. {
  499. // Setup backlight pin as output and output low.
  500. // DDRx |= n
  501. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  502. // PORTx &= ~n
  503. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  504. // Use full 16-bit resolution.
  505. ICR1 = 0xFFFF;
  506. // I could write a wall of text here to explain... but TL;DW
  507. // Go read the ATmega32u4 datasheet.
  508. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  509. // Pin PB7 = OCR1C (Timer 1, Channel C)
  510. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  511. // (i.e. start high, go low when counter matches.)
  512. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  513. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  514. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  515. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  516. backlight_init();
  517. #ifdef BACKLIGHT_BREATHING
  518. breathing_defaults();
  519. #endif
  520. }
  521. __attribute__ ((weak))
  522. void backlight_set(uint8_t level)
  523. {
  524. // Prevent backlight blink on lowest level
  525. // PORTx &= ~n
  526. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  527. if ( level == 0 ) {
  528. // Turn off PWM control on backlight pin, revert to output low.
  529. TCCR1A &= ~(_BV(COM1x1));
  530. OCR1x = 0x0;
  531. } else if ( level == BACKLIGHT_LEVELS ) {
  532. // Turn on PWM control of backlight pin
  533. TCCR1A |= _BV(COM1x1);
  534. // Set the brightness
  535. OCR1x = 0xFFFF;
  536. } else {
  537. // Turn on PWM control of backlight pin
  538. TCCR1A |= _BV(COM1x1);
  539. // Set the brightness
  540. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  541. }
  542. #ifdef BACKLIGHT_BREATHING
  543. breathing_intensity_default();
  544. #endif
  545. }
  546. #ifdef BACKLIGHT_BREATHING
  547. #define BREATHING_NO_HALT 0
  548. #define BREATHING_HALT_OFF 1
  549. #define BREATHING_HALT_ON 2
  550. static uint8_t breath_intensity;
  551. static uint8_t breath_speed;
  552. static uint16_t breathing_index;
  553. static uint8_t breathing_halt;
  554. void breathing_enable(void)
  555. {
  556. if (get_backlight_level() == 0)
  557. {
  558. breathing_index = 0;
  559. }
  560. else
  561. {
  562. // Set breathing_index to be at the midpoint (brightest point)
  563. breathing_index = 0x20 << breath_speed;
  564. }
  565. breathing_halt = BREATHING_NO_HALT;
  566. // Enable breathing interrupt
  567. TIMSK1 |= _BV(OCIE1A);
  568. }
  569. void breathing_pulse(void)
  570. {
  571. if (get_backlight_level() == 0)
  572. {
  573. breathing_index = 0;
  574. }
  575. else
  576. {
  577. // Set breathing_index to be at the midpoint + 1 (brightest point)
  578. breathing_index = 0x21 << breath_speed;
  579. }
  580. breathing_halt = BREATHING_HALT_ON;
  581. // Enable breathing interrupt
  582. TIMSK1 |= _BV(OCIE1A);
  583. }
  584. void breathing_disable(void)
  585. {
  586. // Disable breathing interrupt
  587. TIMSK1 &= ~_BV(OCIE1A);
  588. backlight_set(get_backlight_level());
  589. }
  590. void breathing_self_disable(void)
  591. {
  592. if (get_backlight_level() == 0)
  593. {
  594. breathing_halt = BREATHING_HALT_OFF;
  595. }
  596. else
  597. {
  598. breathing_halt = BREATHING_HALT_ON;
  599. }
  600. //backlight_set(get_backlight_level());
  601. }
  602. void breathing_toggle(void)
  603. {
  604. if (!is_breathing())
  605. {
  606. if (get_backlight_level() == 0)
  607. {
  608. breathing_index = 0;
  609. }
  610. else
  611. {
  612. // Set breathing_index to be at the midpoint + 1 (brightest point)
  613. breathing_index = 0x21 << breath_speed;
  614. }
  615. breathing_halt = BREATHING_NO_HALT;
  616. }
  617. // Toggle breathing interrupt
  618. TIMSK1 ^= _BV(OCIE1A);
  619. // Restore backlight level
  620. if (!is_breathing())
  621. {
  622. backlight_set(get_backlight_level());
  623. }
  624. }
  625. bool is_breathing(void)
  626. {
  627. return (TIMSK1 && _BV(OCIE1A));
  628. }
  629. void breathing_intensity_default(void)
  630. {
  631. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  632. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  633. }
  634. void breathing_intensity_set(uint8_t value)
  635. {
  636. breath_intensity = value;
  637. }
  638. void breathing_speed_default(void)
  639. {
  640. breath_speed = 4;
  641. }
  642. void breathing_speed_set(uint8_t value)
  643. {
  644. bool is_breathing_now = is_breathing();
  645. uint8_t old_breath_speed = breath_speed;
  646. if (is_breathing_now)
  647. {
  648. // Disable breathing interrupt
  649. TIMSK1 &= ~_BV(OCIE1A);
  650. }
  651. breath_speed = value;
  652. if (is_breathing_now)
  653. {
  654. // Adjust index to account for new speed
  655. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  656. // Enable breathing interrupt
  657. TIMSK1 |= _BV(OCIE1A);
  658. }
  659. }
  660. void breathing_speed_inc(uint8_t value)
  661. {
  662. if ((uint16_t)(breath_speed - value) > 10 )
  663. {
  664. breathing_speed_set(0);
  665. }
  666. else
  667. {
  668. breathing_speed_set(breath_speed - value);
  669. }
  670. }
  671. void breathing_speed_dec(uint8_t value)
  672. {
  673. if ((uint16_t)(breath_speed + value) > 10 )
  674. {
  675. breathing_speed_set(10);
  676. }
  677. else
  678. {
  679. breathing_speed_set(breath_speed + value);
  680. }
  681. }
  682. void breathing_defaults(void)
  683. {
  684. breathing_intensity_default();
  685. breathing_speed_default();
  686. breathing_halt = BREATHING_NO_HALT;
  687. }
  688. /* Breathing Sleep LED brighness(PWM On period) table
  689. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  690. *
  691. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  692. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  693. */
  694. static const uint8_t breathing_table[64] PROGMEM = {
  695. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  696. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  697. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  698. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  699. };
  700. ISR(TIMER1_COMPA_vect)
  701. {
  702. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  703. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  704. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  705. {
  706. // Disable breathing interrupt
  707. TIMSK1 &= ~_BV(OCIE1A);
  708. }
  709. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  710. }
  711. #endif // breathing
  712. #else // backlight
  713. __attribute__ ((weak))
  714. void backlight_init_ports(void)
  715. {
  716. }
  717. __attribute__ ((weak))
  718. void backlight_set(uint8_t level)
  719. {
  720. }
  721. #endif // backlight
  722. // Functions for spitting out values
  723. //
  724. void send_dword(uint32_t number) { // this might not actually work
  725. uint16_t word = (number >> 16);
  726. send_word(word);
  727. send_word(number & 0xFFFFUL);
  728. }
  729. void send_word(uint16_t number) {
  730. uint8_t byte = number >> 8;
  731. send_byte(byte);
  732. send_byte(number & 0xFF);
  733. }
  734. void send_byte(uint8_t number) {
  735. uint8_t nibble = number >> 4;
  736. send_nibble(nibble);
  737. send_nibble(number & 0xF);
  738. }
  739. void send_nibble(uint8_t number) {
  740. switch (number) {
  741. case 0:
  742. register_code(KC_0);
  743. unregister_code(KC_0);
  744. break;
  745. case 1 ... 9:
  746. register_code(KC_1 + (number - 1));
  747. unregister_code(KC_1 + (number - 1));
  748. break;
  749. case 0xA ... 0xF:
  750. register_code(KC_A + (number - 0xA));
  751. unregister_code(KC_A + (number - 0xA));
  752. break;
  753. }
  754. }
  755. void api_send_unicode(uint32_t unicode) {
  756. #ifdef API_ENABLE
  757. uint8_t chunk[4];
  758. dword_to_bytes(unicode, chunk);
  759. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  760. #endif
  761. }
  762. __attribute__ ((weak))
  763. void led_set_user(uint8_t usb_led) {
  764. }
  765. __attribute__ ((weak))
  766. void led_set_kb(uint8_t usb_led) {
  767. led_set_user(usb_led);
  768. }
  769. __attribute__ ((weak))
  770. void led_init_ports(void)
  771. {
  772. }
  773. __attribute__ ((weak))
  774. void led_set(uint8_t usb_led)
  775. {
  776. // Example LED Code
  777. //
  778. // // Using PE6 Caps Lock LED
  779. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  780. // {
  781. // // Output high.
  782. // DDRE |= (1<<6);
  783. // PORTE |= (1<<6);
  784. // }
  785. // else
  786. // {
  787. // // Output low.
  788. // DDRE &= ~(1<<6);
  789. // PORTE &= ~(1<<6);
  790. // }
  791. led_set_kb(usb_led);
  792. }
  793. //------------------------------------------------------------------------------
  794. // Override these functions in your keymap file to play different tunes on
  795. // different events such as startup and bootloader jump
  796. __attribute__ ((weak))
  797. void startup_user() {}
  798. __attribute__ ((weak))
  799. void shutdown_user() {}
  800. //------------------------------------------------------------------------------